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2011 NASA Statistical Engineering Symposium 
Agenda 

 
Tuesday, May 3rd 

 
12:30 – 12:45 Welcome and Opening Remarks 

Mr. Stephen Jurczyk 
Deputy Director, NASA Langley Research Center 

 
12:45 – 1:45 Opening Address 
Why Statistical Engineering? 

Dr. Roger Hoerl 
Lead, Applied Statistics Laboratory, GE Global Research 

 
1:45 – 2:00 Break 
 
2:00 – 3:00 Keynote Address 
Increasing Statistical Rigor in Operational Test and Evaluation 

Dr. J. Michael Gilmore 
Director of Operational Test and Evaluation, Office of the Secretary of Defense 

 
3:00 – 3:15 Break 
 
3:15 – 4:30 Senior Leadership Panel 
Integrating Critical, Statistical Thinking 

Mr. Clayton Turner (Moderator) 
Chief Engineer, NASA Langley Research Center 
 
Dr. L. DeWayne Cecil 
Western Region Climate Services Director, National Oceanic and Atmospheric Administration 
 
Mr. Steven Gentz 
Chief Engineer, NASA Engineering and Safety Center, Marshall Space Flight Center 

 
Dr. Edward Kraft 
Chief Technologist, Arnold Engineering Development Center 

 
Mr. Stephen Sandford 
Director, Engineering Directorate, NASA Langley Research Center  

 
5:00 – 6:00 Reception 



Wednesday May 4th 
8:30‐9:15 

Leadership – Essential for Developing the Discipline of Statistical Engineering 
Ronald Snee, Snee Consulting 

9:30 ‐ 10:30 
1A ‐ Infusing Statistical Engineering at NASA Langley 

Research Center 
Chair: Paul Roberts, NASA Engineering & Safety Center 

 
Building Capability 
Mark Hutchinson 

NASA Langley Research Center 
 

Infusing Statistical Engineering  
Peter Parker 

NASA Langley Research Center 

1B – Research and Applications of Response Surface 
Methodology 

Chair: Steve Helland, NASA Glenn Research Center 
 

Topics in Response Surface Methodology 
Adequacy Assurance and Assessment 

Richard DeLoach 
NASA Langley Research Center 

 
Hybrid Designs: Space Filling and Optimal Experimental 
Designs for Use in Studying Computer Simulation Models 

Rachel Johnson Silvestrini 
Naval Postgraduate School 

11:00 – 12:00 
2A ‐ Uncertainty Propagation in Dynamic Models 

Chair: Dr. Luis Crespo, National Institute of Aerospace 
 

Failure Domain Bounding with Applications to Dynamic 
Systems 

Sean Kenny 
NASA Langley Research Center 

 
Beyond Probability:  A Pragmatic Approach to Uncertainty 

Quantification in Engineering 
Scott Ferson 

Applied Biomathematics 

2B ‐ Requirements Verification 
Chair: Ken Johnson, NASA Engineering & Safety Center 

 
Statistical Tolerance Bounds: Overview  
and Applications to Space Systems 

James Womack 
Aerospace Corporation 

 
An Empirical Study of Variables Acceptance Sampling:  

Methods, Implementation, Testing, and Recommendations 
K. Preston White 

University of Virginia 
12:15 – 1:45 Luncheon at Conference Center 

 
2:00 – 3:30 

3A – Statistical Collaboration with University Partners 
Chair: Jim Simpson, United States Air Force 

 
Opportunities for Statistical Collaboration with NASA: 

 Some Personal Reflections 
Geoff Vining 
Virginia Tech 

 
Designed Experiments in Aerospace Ground Testing: 

Challenges and Successes  
Drew Landman 

Old Dominion University 
 

Quality Engineering:  A Journal Dedicated to Quality 
Improvement Methods and Applications 

Connie Borror 
Arizona State University 

 
3B – Measurement System Uncertainty Analysis 

Chair: Mark Zabel, Straight Line Performance Solutions 
 

The metRology Package in R: Tools for Statistical Metrology 
and Uncertainty Analysis 

Will Guthrie 
National Institute of Standards Technology 

 
Modeling the Kronecker Product Covariance Structure for 

Canonical Correlation Analysis 
Ray McCollum 

Booz Allen Hamilton 
 

Design of Experiments in Measurement System 
Characterization and Uncertainty 

Thomas Johnson 
NASA Langley Research Center 

 
4:00 – 5:30 

Panel: Statistical Research 
Moderator: Geoff Vining, Virginia Tech 

Panel:  Christine Anderson‐Cook (Los Alamos National Labs), Carolyn Morgan (Hampton University), Ray Rhew (NASA Langley) 
 

6:00 Banquet Dinner at Conference Center, Special Guest Thomas Jefferson



Thursday May 5th 
8:30 – 9:15 

Overview of the NASA Engineering and Safety Center and Leveraging Limited Data: A Challenge for Statistical Engineering 
Timmy Wilson, Deputy Director of NASA Engineering and Safety Center 

9:30 – 10:30 
4A – Statistical and Systems Engineering in the US Air Force 

Test and Evaluation Enterprise 
Chair: Peter Parker, NASA Langley Research Center 

 
Engineering Test Science for the Military 

Jim Simpson 
United States Air Force, 53rd Test Wing 

 
Doing the Right Things:  

Experimenting So That Warriors Do Not 
Greg Hutto 

United States Air Force 46th Test Wing 

4B – Next Generation Airspace Applications 
Chair: Steve Velotas, NASA Langley 

 
Statistical Design and Analysis of Experiments for Next 

Generation Air Transportation Research 
Sara Wilson 

NASA Langley Research Center 
 

System Safety and Reliability Modeling for the Next 
Generation of Air Transportation 

Vitali Volovoi 
Georgia Tech 

11:00 – 12:00 
5A – Improving Reliability Modeling for Engineers 

Chair:  Geoff Vining, Virginia Tech 
 

Accelerated Life Testing: Tutorial with Applications 
in NASA and the DoD 

Laura Freeman 
Institute for Defense Analysis 

 
Modeling the Reliability of Complex Systems with Multiple 
Data Sources: A Case Study on Making Statistical Tools 

Accessible to Engineers 
Christine Anderson‐Cook 

Los Alamos National Laboratory 
 

5B – Statistical Contributions to Research and Policy in 
Climate Observational Systems and Modeling 

Chair: Ray Rhew, NASA Langley 
 

Developing a Measurement System Uncertainty Framework 
for Earth Observing Satellites 
Nipa Phojanamongkolkij 

NASA Langley Research Center 
 

Responding to Climate Variability and Change: A Rapid 
Prototype For Assessing Impacts of Uncertainty in Climate 
Observations and Model Projections on Decision Support 

Douglas Brown 
Booz Allen Hamilton 

12:15 – 1:45 Luncheon at Conference Center 
 

2:00 – 3:30 
6A – Design for Variation & Reliability and Maintainability 

Engineering 
Chair: Tim Adams, NASA Kennedy Space Center 

 
Design for Variation at Pratt & Whitney 

Grant Reinman 
Pratt & Whitney 

 
A Statistical Approach for Life Limits 

of Space Shuttle Main Engine Components 
Fayssal Safie 

NASA Safety Center 
 

Applications of Bayesian Statistical Analyses in Determining 
the Number of Demonstration Tests to Conduct and in 

Monitoring Reliability Growth 
Bill Vesely 

NASA Headquarters 

 
6B – Measurement System Characterization with 

Applications in Aeronautics and Exploration 
Chair: Mark Schoenenberger, NASA Langley 

 
Advancements in Aeronautics Measurement System 

Characterization 
Ray Rhew 

NASA Langley Research Center 
 

Perspectives on Planetary Entry, Descent, and Landing 
Research 

Sean Commo 
NASA Langley Research Center 

 
Thermal and Pressure Characterization of a Wind Tunnel 

Force Balance using the Single Vector System 
Chris Lynn 

NASA Langley Research Center 
4:00 – 5:30 

Panel: Statistical Engineering: What, Why and How 
Moderator: Christine Anderson‐Cook, Los Alamos National Laboratory 

Panel: Ronald Snee (Snee Consulting), Geoff Vining (Virginia Tech), Mark Zabel (Straight Line Performance Solutions) 
6:00 Bus Transportation to Banquet Dinner at the Williamsburg Winery (Dinner at 6:30) 



Roger Hoerl, GE Global Research 
With Considerable Input From Ronald D. Snee            

Why Statistical Engineering? 

NASA Conference on Statistical Engineering 
Williamsburg, VA 

May 3rd, 2011 
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Today’s Agenda 

•  Motivation 

•  Today’s Realities 

•  My “Blinding Light of the Obvious” 

•  Statistical Engineering Definition 
•  Giving a Name to Something Too Often Done in the Shadows 

•  Examples 

•  Why Statistical Engineering Needs to be a Formal 
Discipline 

–  Versus Done on an Ad-Hoc Basis 
•  Summary 



3  

My Motivation 

•  Internship at DuPont 

•  Early career at Hercules Chemical Co. 
•  Wake up call at Scott Paper Co. 

•  Career at GE 

For me, this is personal 
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Today’s Realities 
The statistics discipline has much to be proud of and excited 
about: 
•  Hal Varian (chief economist at Google): “I keep saying that the sexy job in the 

next 10 years will be statisticians.  And I’m not kidding.”  
•  More interdisciplinary academic research being conducted 
•  Increased enrollments in service courses at many universities 

At the same time, there is an ongoing concern that statisticians 
are not fully utilized within their organizations: 
•  Statisticians often are not sure how to take more initiative to get involved in the 

large, complex, unstructured “mission critical” projects in their organizations 
•  Management may see that statisticians can make larger contributions than 

passive consulting, but are not sure how to properly deploy them 
•  Professional colleagues may not understand how to engage statisticians in 

broader roles as collaborators, as opposed to going to them for support on 
narrow technical questions 

Statisticians have much to offer: how do we unlock their potential? 
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My “Blinding Light of the Obvious” 
Susan Hockfield – MIT President: 

Around the dawn of the 20th century, physicists discovered the 
basic building blocks of the universe; a “parts list”, if you will.  
Engineers said “we can build something from this list,” and 
produced the electronics revolution, and subsequently the 
computer revolution.   

More recently, biologists have discovered and mapped the 
basic “parts list” of life – the human genome.  Engineers have 
said “we can build something from this list,” and are producing 
a revolution in personalized medicine. 

Loosely quoted from January, 2010 seminar at GE Global Research 
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Application to Statistical Science 

Two important questions we must answer:  

Who is building something meaningful from the 
statistical science “parts list” of methods?  

What are the implications of stopping at developing 
the parts list – the methods, and not building 
something of interest to society from them? 

Can statisticians be thought leaders in addition to being “tools guys”? 
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Some Current Challenges 

Some currently unsolved statistics problems: 
•  Ensuring that statistical projects have high impact 
•  How to attack big, complex, unstructured problems 

–  Problems that do not “correspond to an identifiable textbook 
chapter” (Meng, 2009) 

•  The need to integrate the principles of statistical thinking 
with the application of statistical methods and tools 

•  Providing opportunities for statisticians to demonstrate true 
leadership to their organizations, rather than only passive 
consulting services 

An opportunity to build something new from the parts list? 



8  

A Conjecture 

Scientists, engineers, statisticians and other professionals have 
been building meaningful new things from the statistical science 
parts list of tools for some time, to society’s benefit.  However: 
•  This has typically been done on an ad-hoc basis with little or no 

underlying theory documented to provide guidance to others.  

•  Applications have generally been “one offs”, requiring the wheel 
to be reinvented each time.   

•  This has significantly slowed progress, and missed opportunities 
to benefit society. 

Not a new idea, but perhaps a new discipline 
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Statistical Engineering Fundamentals 
Science:  
•  Systematic study and advancement of the facts and general laws of the physical 

world 

Engineering:  
•  Study of how to best utilize scientific and mathematical principles for the benefit of 

humankind 

Note: while scientists study and advance the fundamental laws of nature, 
engineers study how existing laws and principles could be put to better use,  
e.g., the IBM Computer “Watson” 
•  Engineers develop theory - How existing science can be better utilized - What 

works, what doesn’t, and why 
•  The development and use of theory is the key differentiator between an “engineer” 

and a “practitioner” 

Theory: A coherent group of general propositions used to explain a class of 
phenomena 
•  Note:  there is no mention of mathematics in this or other common definitions of 

theory! 

Terminology is important, and needs to be precise 
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Statistical Engineering Definition 
Statistical engineering:  
•  The study of how to best utilize statistical concepts, methods, and tools 

and integrate them with information technology and other relevant 
sciences to generate improved results (Hoerl and Snee 2010a) 

•  In other words, trying to build something meaningful from the statistical 
science parts list 

Notes 
For this to be a true engineering discipline as opposed to just a sexier term 
for applied statistics, there must be a dynamic theoretical foundation based 
on rigorous research, just as there is for electrical engineering, mechanical 
engineering, and so on 
This definition does not refer to application of statistics to engineering 
•  Statistical engineering can be applied to improving anything 
This is a different definition than that used by Eisenhart, who we believe was 
the first to use this term in 1950 

This definition is consistent with dictionary definitions of engineering 
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Elaboration of Definition 

The issues we raise above have nothing to do with the old 
distinction between applied statistics and theoretical statistics.  
The traditional viewpoint equates statistical theory with 
mathematics and thence with intellectual depth and rigor, but 
this misrepresents the notion of theory.   

 We agree with the viewpoint that David Cox expressed at the 
2002 NSF Workshop on the Future of Statistics that “theory is 
primarily conceptual,” rather than mathematical.  (Lindsay et al. 
2004) 

An important viewpoint to keep in mind: 

•  Statistical engineering is different from traditional applied statistics 
•  Theory is conceptual, not necessarily mathematical 
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 Applied Statistics or Statistical Engineering? 

Work 
Environment Work Description Comments 

DuPont  
Engineering– 
Summer Intern 
1981, 1982 

Use statistics methods to 
address design and 
analysis problems 
presented to him 

•   Applied methods learned in    
   graduate school.  
•   Employer, co-workers and clients  
   were pleased 

Hercules     
1983-87 

Identify opportunities to 
apply statistical methods to 
important design and 
analysis problems 

•   Deepened understanding of 
   how to apply methods learned in  
   graduate school.  
•   Employer, co-workers and clients  
    were very pleased 

Scott Paper 
1987-1995 

Deploy Statistical Process 
Control across the company 

•  Not covered in graduate school 
•  Not covered in SPC books 
•  Other skills beyond statistics were 

needed 
•  Several concepts, methods and 

tools needed to be integrated 

Three Work Environments  
Experienced by Roger Hoerl Early in his Career 
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 Example of Statistical Engineering: 
 Lean Six Sigma and the DMAIC Framework 

Lean Six Sigma (LSS) is an obvious example of statistical engineering – building 
something from the parts list of tools.  I believe that this is one reason for its prolonged 
success.  LSS has been deployed broadly not only within the private sector, but within 
several branches of the US armed forces.  
•  LSS has not invented any new tools (no new statistical science), but has achieved 

much greater results from existing tools 
–  The tools have been more effectively integrated and linked through the DMAIC 

model, for example 
•  LSS has developed dynamically through cycles of application of the scientific 

method – theory and experimentation 
–  Addition of the Define stage, integration of Lean approaches, etc. 

•  LSS development has been based on a solid theoretical foundation in continuous 
improvement, e.g.: 
–  Pareto principle (focus on a few key process drivers) 
–  Use of project-by-project improvement (Juran) 
–  Utilization of small (4-6 people) project teams (Useem 2006) 
–  Use of tools with sound theoretical bases; DOE, regression, SPC, etc. 

A result of “the study of how to best utilize statistical concepts, methods, …” 
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A Personal Example 
•  Problem: Develop a financial “default predictor” for GE 

•  Big, unsolved problem! 
•  Challenges of trading within a multi-billion dollar portfolio 
•  No commonly accepted definition of default 
•  Limited internal data – no set of “universal data” exists 
•  No defined measure of success 

•  Approach: 
•  Cross-functional team needed (statistics, OR, quantitative finance, business 

expertise), spread between in upstate New York, Bangalore, and Stamford, CT 
•  Developed definition of default, and metrics to document success and failure 
•  Data obtained externally – needed to merge disparate data sources 

•  Set up direct feed from Wall Street 
•  Final prediction methodology utilized: 

•  Publicly available default predictor as an input 
•  Smoothing algorithms, CART, simulation, Markov Chains, and censored data 

methods from reliability 
•  Awarded US Patent for system – not for algorithm 

Not at textbook problem – or solution 
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Potential Impact of Statistical Engineering 
I believe that a balanced approach involving both statistical science and 
statistical engineering would enable us to have a much broader impact 
on society 

Im
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Statistical Science 
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Statistical Engineering 
& Statistical Science 
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Potential Impact of Statistical Engineering 
Many have noted a gap between the concepts of statistical thinking 
and the application of statistical tools and methods 

Strategic 

Operational 

? 

? 

Tactical 
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Statistical Thinking Definition 

Statistical Thinking is a philosophy of learning and 
action based on these fundamental principles: 

•  All work occurs in a system of interconnected 
processes 

•  Variation exists in all processes 

•  Understanding and reducing variation are keys to 
success 

ASQ Glossary and Tables for SQC, 1996 
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Potential Impact of Statistical Engineering 

Strategic 

Tactical 

Operational 

Statistical engineering is a potential bridge between statistical thinking 
and statistical tools and methods 
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Potential Impact of Statistical Engineering 
We also believe that statistical engineering can help bridge the gap 
between statistical theory and practice 
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Large, Unstructured, Complex Problems 
•  The big payoff, mission critical problems that “do not correspond to an identifiable 

textbook chapter” (Meng 2009) 

•  Impact is broad – process performance, financial, customer, social and 
environmental  

•  Several departments, groups and functions are involved 
•  Problem has high degree of complexity involving  both technical and non-technical 

challenges 
•  Multiple sources of data and information are used 

•  More than one statistical technique is required for solution 
–  Typically non-statistical techniques are required 

•  Creative use of information technology is needed for success 
•  Long-term successes requires embedding solution into work processes typically 

through: 
−  Use of custom software 
−  Integration with other sciences and disciplines 

Statistical engineering is needed for such problems – huge opportunity for the profession 
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My Message 
To build on their successes and prosper in the 21st century, statisticians 
need to be more engaged in solving the big, complex, unsolved 
problems in their organizations  

One key change needs to be a balanced focus on statistical engineering 
and statistical science 

Statistical engineering can help: 
•  Ensure that statistical projects have high impact 
•  Provide a framework to attack large, complex, unstructured problems 
•  Integrate the principles of statistical thinking with the application of 

statistical methods and tools 
•  Enable statisticians to provide true leadership to their organizations,  

–  Rather than focus on passive consulting services 

I am anxious to hear what others have to say about statistical engineering this week. 
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Increasing Statistical Rigor in 
Operational Test and Evaluation

Dr. Michael Gilmore

Director, Operational Test & Evaluation

Keynote Address to the NASA Statistical Engineering 
Symposium 
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Outline

• DOT&E Background

• National Research Council Study

– Statistics, Testing, and Defense Acquisition (1998)

• Current DOT&E Initiatives

• Increasing Statistical Rigor in Test & Evaluation

– Design of Experiments

– Reliability Growth
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DOT&E Background

• DOT&E was created by Congress in 1983.

• Director is appointed by the President and confirmed 
by the Senate.

• Director’s reports, by statute, go directly to the 
Secretary of Defense and Congress

• Responsible for all operational test and evaluation, 
and live fire test and evaluation within DoD.

• Provides independent oversight and reporting.

3



4

Office of the Secretary of Defense

Secretary of Defense

USD (Policy)

PDUSD (P)
USD 

(Comptroller)
USD (Personnel 

& Readiness)

USD 
(Intelligence)

Director  
Operational 

Test & 
Evaluation

USD (Acquisition, 
Technology & Logistics)

Deputy Secretary of 
Defense

DUSD (Acquisition 
& Technology)

Director Defense 
Research & 
Engineering

DUSD (Logistics & 
Materiel 

Readiness)
DUSD (Acquisition 

& Technology)

The Director of Operational Test and Evaluation is the 
Principal Staff Assistant and advisor to the Secretary 
of Defense on all matters pertaining to operational 
test and evaluation within the US DoD.



DOT&E Interactions

Guidance and 
consultation

DOT&E Tools:
1. Test and Evaluation Master Plan approval
2.  Test plan  and Test Strategy approval
3.  Beyond Low Rate Initial Production Reports
4.  Early Fielding reports
5.  Annual Report
6.  Director’s Memo, Testimony, Speeches
7.  Close cooperation with  Service Test 

Agencies 

5
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DOT&E Responsibilities

• Prescribe Department of Defense policy for:
– Operational Test & Evaluation (OT&E)
– Live Fire Test & Evaluation (LFT&E)

• Provide guidance on all OT&E and LFT&E matters
• Monitor & review all OT&E and LFT&E
• Report annually to Congress on OT&E and LFT&E
• Member of Defense Acquisition Board
• Approve test plans for OT & LF oversight programs
• Report on programs, before full-rate production decision to 

the Secretary, OSD, Services, & four congressional 
committees:

 Adequacy operational and live fire testing

 Operational Effectiveness 

 Operational Suitability

 Survivability and Lethality



• Operational Testing supports full rate production decision
• Report on programs, before full-rate production decision:

 Test adequacy, Operational Effectiveness, Suitability, Survivability and 
Lethality

Acquisition Timeline
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DT&E Integrated DT&E and OT&E/LFT&E

Increasing System Integration // 
Operational Realism

Milestone A

Technology Development

Milestone B

Program Initiation

Early Operational Assessment 
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Full Rate

Production 
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Low Rate 

Initial Production

Operational Assessment
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Why is a Program Placed on 
DOT&E OT Oversight?

• Statutory requirement for Major Defense Acquisition Programs 
(MDAPs)
– Designated by the Secretary of Defense, or

– Estimated by the Secretary of Defense to require an eventual total 
expenditure for research, development, test, and evaluation of more 
than $300,000,000 (based on fiscal year 1990 constant dollars), or 

– Estimated to have an eventual total expenditure for procurement of 
more than $1,800,000,000 (based on fiscal year 1990 constant dollars).

• Congress or OSD has expressed a high level of interest

• Congress has directed DOT&E report as condition for 
production or progress

• Program requires joint or multi-Service testing

• Program has a close relationship or is key to a major program

• Militarily significant change to system

8



National Research Council Study (1998)

• Panel on Statistical Methods for Testing and Evaluating Defense Systems
– Examine statistical techniques & make recommendations

• Statistics, Testing, and Defense Acquisition: New Approaches and 
Methodological Improvements

• Select conclusions & recommendations
– Conclusion 3.1: Major advances can be realized by applying selected industrial principles and 

practices in restructuring the paradigm for operational testing…
– Conclusion 4.1: The current practice of statistics in defense testing design and evaluation does 

not take full advantage of the benefits available from the use of state-of-the-art statistical 
methodology.

– Recommendation 4.2: All estimates of the performance of a system from operational test 
should be accompanied by statements of uncertainty through use of confidence intervals…

– Recommendation 4.4: The service test agencies should examine the applicability of state-of-
the-art experimental design techniques and principles and, as appropriate, make greater use 
of them in the design of operational tests.

– Recommendation 7.4: Operational test agencies should promote more critical attention to the 
specification of statistical models of equipment reliability, availability, and maintainability and 
to supporting the underlying assumptions…

• The majority of the recommendations have still not been implemented 
13 years later. 9



DOT&E Initiatives
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DOT&E Initiatives & Increasing Test Rigor

• Integrated Testing

– “…  DOE provides the scientific and statistical methods needed to 
rigorously plan and execute tests and evaluate their results. … 
The DT&E and OT&E offices are working with the OTAs and 
Developmental Test Centers to apply DOE across the whole 
development and operational test cycle for a program. 

– “DOE should allow DOT&E to make statements of the confidence 
levels we have in the results of the testing. Whenever possible, 
our evaluation of performance must include a rigorous 
assessment of the confidence level of the test, the power of the 
test and some measure of how well the test spans the 
operational envelope of the system.”

11Apply DOE Across Entire Acquisition Development Cycle



Design of Experiments (DOE)

• Test planning is a science
• DOT&E must evaluate test plan adequacy

– TEMP
– IOT&E

• Statistics equips us to determine:
– Breadth of coverage
– Power
– Confidence

• Design of Experiments is a formal scientifically based 
method for constructing test plans.
– There are many tools within the DOE toolbox.
– Key idea behind DOE: strategically manipulate factors & levels 

(inputs) to influence the output.

DOE is a scientific tool for developing robust 
test plans!

Measures 
of test plan 
adequacy!



DOT&E Retrospective Case Studies

• Motivation: get beyond general concepts, look at real 
world examples

• Goal: provide baseline and highlight areas for 
improvement

• Conducted an analysis of select Beyond Low Rate Initial 
Production (BLRIPs) from last two years

– Noted a structured approach to testing that captures many 
aspects of these concepts

– The analysis also identified areas of potential improvement



Case Studies – BLRIP Reviews

• USS Virginia

• Guided Multiple Launch Rocket System (GMLRS) 
Unitary

• MH-60R and MH-60S

• Stryker Mobile Gun System (MGS)

• Joint Chemical Agent Detector (JCAD)

• DoN Large Aircraft Infrared Countermeasures 
(LAIRCM)

• EA-18G



Stryker Mobile Gun System (MGS)
Coverage of Operational Envelope

- Instrumented data collected during controlled IOT at Ft. Hood;  number 
of mission replications indicated in cell

- Limited use data collected during Mission Rehearsal Exercise at Ft. 
Lewis; no instrumentation or control over factors

- Limited use (anecdotal) data collected in theater during unit 
deployment to OIF, mostly on tactics and employment  techniques

Key

• IOT test design builds on evidence from 
previous events

Mission Rehearsal Exercise prior to 
unit deployment (basis for Section 
231 report)
 Field data from unit deployment

• IOT scoped to focus on voids in medium 
and high threat levels

Weather: as it occurred; not controlled

Mission Attack Defend Stability and Support

Illum OPFOR Terrain Urban Mixed Forest Desert Urban Mixed Forest Desert Urban Mixed Forest Desert

Day Low 1 1 2

Day Med 1 1 2

Day High 1 1 3 5

Night Low 2 2

Night Med 2 2

Night High 2 1 3

5 3 3 3 2 16

Early deployment changed original DOE plan

4 Factors: Mission Type, Terrain Type, Threat Level & Illumination



Stryker Mobile Gun System (MGS)
Coverage of Operational Envelope

- Instrumented data collected during controlled IOT at Ft. Hood;  number 
of mission replications indicated in cell

- Limited use data collected during Mission Rehearsal Exercise at Ft. 
Lewis; no instrumentation or control over factors

- Limited use (anecdotal) data collected in theater during unit 
deployment to OIF, mostly on tactics and employment  techniques

Key

• IOT test design builds on evidence from 
previous events

Mission Rehearsal Exercise prior to 
unit deployment (basis for Section 
231 report)
 Field data from unit deployment

• IOT scoped to focus on voids in medium 
and high threat levels

Weather: as it occurred; not controlled

Mission Attack Defend Stability and Support

Illum OPFOR Terrain Urban Mixed Forest Desert Urban Mixed Forest Desert Urban Mixed Forest Desert

Day Low 1 1 2

Day Med 1 1 2

Day High 1 1 3 5

Night Low 2 2

Night Med 2 2

Night High 2 1 3

5 3 3 3 2 16

Early deployment changed original DOE plan

4 Factors: Mission Type, Terrain Type, Threat Level & Illumination

Lesson Learned: 
“DOE” identified gaps in coverage, 
partially filled from other sources



Impact of Experimental Design

• Case Study: Mobile Gun System Design Comparison

• The case study suggests that 16 runs is far from adequate to span the 
operational battle space with high power and confidence. 

• The DOE optimal design is a more powerful allocation of the 16 tests than 
the case based design.

• DOE allows us to understand what we are giving up!  
– In the case of MGS, the system was deployed early which altered the original 

test plan.

Executed 
Cases in IOT&E

DOE I - Factorial 
Design

DOE II – Optimal 
Design (large)

DOE III – Optimal 
Design (small)

Factors & Levels
4 factors: 

Mission Type (3), Terrain Type (4), Treat Level (3), Illumination (2)

Total Tests: N 16 72 36 16

Confidence: (1-α) Set to the same level across all 4 designs:  Confidence = 95%

1σ - Power (1-β) 8.1% - 28.0% 68.1% - 98.7% 35.0% - 81.5% 12.3% - 39.9%



MGS Case Design vs. D-Optimal Design

Mission Attack Defend Stability and Support

Illum OPFOR Terrain Urban Mixed Forest Desert Urban Mixed Forest Desert Urban Mixed Forest Desert

Day Low 1 1 2

Day Med 1 1 2

Day High 1 1 3 5

Night Low 2 2

Night Med 2 2

Night High 2 1 3

5 3 3 3 2 16

Mission Attack Defend Stability and Support

Illum OPFOR Terrain Urban Mixed Forest Desert Urban Mixed Forest Desert Urban Mixed Forest Desert

Day Low 1 1 1 3

Day Med 1 1 2

Day High 1 1 1 3

Night Low 1 1 2

Night Med 1 1 1 3

Night High 1 1 1 3

1 2 1 2 2 1 2 1 1 1 1 1 16

Case Based Design Executed in IOT&E

Statistical D-Optimal Design



Joint Chemical Agent Detector (JCAD)

• What is the operational envelope? (factors and levels)
– Agent (9 agents and 2 simulants)

– Temperature, water vapor concentration, agent concentration, 
interferent (continuous) 

– Environment (sand, sun, wind, rain, snow, fog)

– Service (Army, Air Force, Navy, Marine Corps)

– JCAD Mode (Monitor, Survey, TIC)

– Operator (Any MOS to CBRN Specialist)

– TTP (Monitor Mission, Survey Mission, Decon Support)



Joint Chemical Agent Detector (JCAD)
Coverage of Operational Envelope



Joint Chemical Agent Detector (JCAD)
Coverage of Operational Envelope

Response Surface Design applied 
to chamber tests

“DOE”  could have been 
applied to full test program 
for breadth of coverage



Factor S:N* = 0.5 S:N = 1.0 S:N = 2.0

Temperature 32.0% 84.7% 99.9%

Water Vapor 

Content (WVC)
42.1% 94.1% 99.9%

Concentration 46.5% 96.3%
99.9%

Joint Chemical Agent Detector (JCAD)
Power of Test

• Power Analysis for JCAD Chamber Test
– DT Testing
– Statistical Response Surface Design (I-Optimal)
– High power test plan

*S:N – signal-to-noise ratio, goal detectable difference as a ratio to the design 
standard deviation



Lessons Learned – Case Studies

• There is no “one size fits all” approach for designing 
experiments.

• Review of past BLRIPS illustrated the need for a more rigorous 
approach to DT/OT incorporating statistical experimental 
design.

• Defining measurable, testable, important response variables is 
key to a good design.

• T&E already thinks about factors and levels (input variables); 
however we can improve on a scientific approach to varying 
factors & levels.

• DOE can be applied in both DT and OT. However, responses 
and factors may differ between the two.

• Confidence and power add important information to our 
assessment of the test adequacy and test results.



The Strength of Designed Experiments

• We face the following constraints in testing:
– Limited Test Resources

• Range Size
• Forces (Manpower & Materiel)

– Limited Test Time
• Fielding & Production Schedules
• Range Availability

– Limited Test Articles
• Unit Cost
• Production Time

• Design of experiments allows us to understand the tradeoffs 
these constraints impose.

• Design of experiments can provide a statistically optimum 
allocation of our assets under given constraints.

24



DOT&E Guidance on Design of Experiments

• DOT&E Memorandum, October 19, 2010
• “Design of Experiments is a structured process to identify the 

metrics, factors, and levels that most directly affect operational 
effectiveness and suitability…”

• Elements of experimental design for TEMPs and Test Plans 
approval: 
– The goal of the experiment.
– Quantitative mission-oriented response variables 

• effectiveness and suitability

– Factors [and levels] that affect response variables
– A method for strategically varying factors 

• across both developmental and operational testing

– Statistical measures of merit 
• power and confidence on the relevant response variables for which it makes 

sense. 
• Important to understand "how much testing is enough?”

25



Challenges to Integrated Testing using DOE 

• Current policy documents do not address the use of 
statistics during T&E planning or analysis.
– No Policy  No funding

• Program Managers decide how much and where DT is done
– Makes planning sequential experiments challenging.

• Developmental testing has not been sufficient or adequate
– OT&E results indicate a Department-wide problem

– Seeing more weapons systems not ready for IOT&E and combat.

• Congress recently created a Director of Developmental 
Test and Evaluation (DDT&E)
– DDT&E has not yet provided guidance on the application of 

statistical methods in DT

26
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Leadership – Essential for Developing the 
Discipline of Statistical Engineering
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2Statistical Leadership

Agenda

Today’s Realities
Increasing the Impact of our Work
Dealing with Large, Unstructured, Complex Problems
Why Leadership is Needed

What Does Management Expect of Statisticians and other 
professionals?

What Do Leaders Do?
Developing Leadership Skills
Conclusion



3Statistical Leadership

Today’s Realities

Global Competition, fueled by information technology, 
is forcing changes in all aspects of our society
- Business
- Government
- Education
- Health Care

Customers are demanding more
We have to change how we work and manage
- All aspects of our organizations
- All processes we use to do our work
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Implications for Use of Statistical Thinking and Methods

Internet enables communication and data access available to 
anyone in the world at any time.
Anyone with a PC can download and use statistical software
Cost conscious organizations are asking why employees can’t 
analyze their own data
Narrow technical tasks, such as intensive data analysis, are easy 
to transfer to employees in low cost countries* 
The “market” for the old role of a consultant who performs data 
analysis is rapidly evaporating. 

*We do not suggest that this controversial phenomenon is either good or bad; only that it is occurring.

Organizational Leaders Are Looking for 
People Who Can Deliver High Impact Results
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Expanding Role of Statisticians

Consult on other people’s 
projects
Perform routine analyses if 
needed
Teach statistical tools 
Work with technical people

Narrow expertise and 
accountability
“Benign neglect”

Lead or collaborate on our own 
projects – project ownership
Focus on significant, complex 
problems
Design training systems
Work with managers and 
technical people
Broad expertise and 
accountability
“In the firing line”

Consultant/Expert Collaborator/Leader

Computer Scientists Provide an Example of Such a Role
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Statistical Engineering Is A Team Sport

Management and 
Organizational Leaders

Statisticians Scientists, Engineers and
Other Professionals
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Statistical Engineering Increases Impact
Balanced approach involving both statistical science and statistical 
engineering will enable us to have a much broader impact on society

Im
pa
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Statistical Science

Statistical Engineering
and

Statistical Science

Time
© R. D. Snee and R. W. Hoerl 
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Case Study – Product Quality Management

Background
DuPont Dacron polyester products experiencing quality problems in the 
marketplace
Products produced at 8 plants globally
Key players – Manufacturing  and Marketing – not working together
Many quality and statistical tools are available to solve this problem

Questions
Is this an opportunity with major impact?
Is this a large, unstructured, complex problem?
What is needed to be successful?

4
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PQM System
Production

Process
Measurement

Processes
Sampling
Processes

Decision and Control 
Processes

Process
Materials

Finished 
Product

Information System ProcessesUser
Input Reports

Acceptance

In-Process

Finished Product

Measurement
Process 

Materials Acceptance

Process Control

Product Release

Measurement 
Control



10Statistical Leadership

Case Study - PQM System – Statistical Techniques

Product Release
Sampling Schemes

Process Control
Cumulative Sum

Measurement Variation
Shewhart and CUSUM Control charts
Inter-laboratory studies

Process Calibration and Adjustment
Response Surface Methods

Process Variance Components - Estimation and maintenance
Statistical Techniques Were Integrated, Linked and Sequenced to 

Produce the Product Quality Management System

5
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DuPont PQM: Statistically-Based 
Product Quality Management System

Product Quality Management (PQM) 
Framework for managing the quality of a product or service. 
Operational system the enables Marketing, R&D, Production 
and support personnel to work together to meet increasingly 
stringent customer requirements

“Within two years product quality had improved to the point of commanding a 
marketplace advantage and more than $30 million had been gained in 
operating cost improvements. The statistically based Product Quality 
Management system developed for “Dacron” was expanded to other products 
with further contributions in earnings.”

Richard E. Heckert
Chairman and CEO, DuPont Company

ASA Annual Meeting 1986
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Large, Unstructured, Complex Problems

• The big payoff, mission critical problems 
• Impact is broad 

• Process performance, financial, customer, social and environmental 
• Several departments, groups and functions and disciplines are involved
• Problem has high degree of complexity

• Technical and non-technical challenges are involved
• Multiple sources of data and information are used
• Mix of statistical and non-statistical techniques are required for solution
• Creative use of information technology is needed for success
• Long-term successes requires embedding solution into work processes 

Statistical Engineering is Needed for Such Problems 
Huge Opportunity for All Involved
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Case Study
Product Quality Management System

Role of Statisticians in PQM at DuPont 
Leaders in developing their organization’s strategy for 
quality management
Leaders in developing technology systems for quality 
management
Participants in the business planning process
Participants in problem solving activities
Leaders in initiating and implementing quality 
management training systems at all levels

DuPont PQM Manual 1988
7
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What Do Executives Expect?

Executives Interviewed (Vining, Bowen and Parr 2001)

CEO, Major Technology Co., #1
CEO, Major Service Company 
Senior VP, Major Manufacturing Co.
VP, R&D, Major Food Company
VP, Major Technology Co., #2
VP and GM, Major Manufacturing Co.

Executives Expectations
Persons Who Can Lead Projects and Get Results

“Results Buy Freedom”
Arnie Eckleman, 

Senior Vice President
Verizon Communications
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Developing Leadership Skills

Some Questions You May Have

What is Leadership?
What Do Leaders Do?
Key Leadership Skills?
How do I develop leadership skills?
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Leaders Help Us Make the Needed Changes?

Leaders help a group of people move from 
One paradigm to another 

"Leadership:  the art of getting someone else to 
do something you want done because he wants 
to do it."

Dwight D. Eisenhower

“Leaders have followers” 
Bill Gore, Founder 

W. L. Gore and Associates
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We have Many Kinds of Leaders

Political
Military
Business
Academic
Religious
Sports
Statistical Leaders

Technical
Managerial

And many more 
……………
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Myths of Leadership

• Leadership is a rare skill
• Leaders are born not made
• Leaders are charismatic
• Leadership exists only at the top of an organization
• The leader controls, directs, prods, manipulates

Bennis and Nanus 1985
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Change Requires Both Leading and Managing

Leading
Moving Between 
Paradigms
Doing Right Things
Creating 
Improvements
Leading & Developing 
People

Managing
Working Within a 
Paradigm
Doing Things Right
Holding the Gains

Managing Processes
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We Need Both Leading and Managing

Lead People
• Direction
• Communication
• Resources
• Coach
• Reinforce

Manage
Processes

Happy Customers

Feedback
- What’s working?
- Need to do differently?

Healthy processes serving happy customers
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Time Spent on Doing and Improving Work

Role
Leading

“Improving” Work
Managing

“Doing” Work
Executives 90 10
Managers 70 30

Others 30 70
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So What Do Leaders Do?

Provide Direction
Where We’re Headed

Communicate
What and Why

Enable, Coach and Counsel
Training, Resources, Support

Recognize and 
Reinforce
Results and 
Desired Behavior
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Providing Direction - Showing the Way

Vision - What Success Looks Like
Objectives - How we will win
Goals - How much, by when
Strategies - What we will focus on
Initiatives - Specific projects we will undertake
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Kotter’s Eight Stages of Successful Change

Establish a sense of urgency
Create a guiding coalition
Develop a vision and strategy
Communicate the change vision
Empower employees for broad based action
Generate short-term wins
Consolidate gains and produce more change
Anchor new approaches in the culture
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Communicate The Direction
Provide Understanding and Hope

The direction we are pursuing
What benefits we expect to get
Progress - Results achieved to date
Communication should be clear, concise and continuous
Variety of media should be used
- People take in and process information in different ways
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Enable - Set Up People for Success

Provide resources - people, time, $$$
Provide training - build needed skills
Provide methods to accomplish assigned tasks
Remove barriers
Coach and Counsel
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Recognize and Reinforce –
Catch People Doing Things Right

Recognize accomplishments and results
- Psychological rewards
- Financial rewards

Reinforce desired behavior
- Catch people doing things right 

People want and need feedback
- “How am I doing?” , Ed Koch, Mayor, New York

Feedback needed for improvement
Key tool - Management reviews
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Leaders Lead People – Leaders ….

Show the Way

Develop 
Understanding and Hope

Set People Up for Success

Catch People 
Doing Things Right
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Critical Leadership Skills

Organizational Acumen 
– Understand how the organization works

Process and Systems Thinking 
Strategic Planning and Deployment
Stakeholder Building
Communication – Clear, concise and continuous
Reviewing and Coaching
Structured Improvement Methods (DMAIC)
Learn to Deal With Teams and Group Dynamics
Meeting Design and Facilitation
Project Planning and Management
Understanding Human Behavior
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Ways to Develop Leadership Skills

Read books and articles
Attend courses
Discuss the subject with colleagues 
Practice, Practice, Practice, ………..

“Becoming a leader is like 
learning to play the violin in public”

Anonymous
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My Message

Place an increased focus on enhancing your leadership skills
Be on the lookout for examples - good and bad - of leadership that 
you can use as a model
Personal Change Is Required

Those Who Fail to Respond to Their Changing World Will Have 
Less Influence in It 

Best way to learn to lead is to do it 
- Be on the lookout for your opportunity!

Can We Be Successful?
“Never doubt that a small group of committed people can 
change the World.  Indeed,  it is the only thing that ever has”

Margaret Mead
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For Further Information, Please Contact:

Ronald D. Snee, PhD

Snee Associates, LLC

Ron@SneeAssociates.com

610-213-5595

www.SneeAssociates.Com

Questions and Comments?



Engineering Excellence 1 

NASA Engineering  
and 

Safety Center 
(NESC) 

Overview 
May 5, 2011 



Engineering Excellence 2 

NESC is cultivating a Safety culture focused on engineering and technical 
excellence, while fostering an open environment and attacking challenges 

with unequalled tenacity 

NESC Background and Vision 

•  NESC was established in July 2003 in 
response to the Columbia accident 

•  Safety philosophy has 3 tenets: 

–  Strong in-line checks and balances 

–  Healthy tension 

–  “Value added” independent 
assessment 

•  NESC provides independent 
assessment of technical issues for 
NASA programs and projects 

Apollo Saturn V Launch Vehicle 



Engineering Excellence 3 

•  Institutionalized “Tiger Team” approach to 
solving problems 

•  Agency-recognized NASA Technical Fellows 
lead Technical Discipline Teams (TDT)  

–  TDTs include “ready” experts from across 
NASA, industry, academia and other 
government agencies   

•  Assemble diverse, expert technical teams 
that provide robust technical solutions to the 
Agency’s highest-risk and most complex 
issues 

•  Strong Systems Engineering function for 
proactive trending and identification of 
problem areas before failures occur 

NESC Model 

Space Shuttle on Mobile Launch Platform 

Focus on technical rigor and  
engineering excellence 



Engineering Excellence 4 

NESC Organization 
Distributed NESC Team 

•  NESC has 61 full-time 
employees selected from across 
the Agency and externally 

•  NESC Chief Engineers at each 
Center provide technical insight 
and liaison roles 

•  15 NASA Technical Fellows are 
recognized experts in their 
respective engineering fields 

•  18 Technical Discipline Teams (TDT) comprised of 16 engineering and 2 
operations disciplines create a network of over 700 engineers available 
for matrix support  

•  More than 200 TDT members are drawn from industry, academia and 
other government agencies 

Other US 
Gov't 

19 

Industry 
160 

NASA  
515 

University 
33 

Over 700 top caliber engineers 
support the NESC nationwide  



Engineering Excellence 5 

•  15 NASA Technical Fellows are currently active 
–  Aerosciences - Dave Schuster (LaRC) 
–  Avionics - Oscar Gonzalez (GSFC) 
–  Electrical Power – Denney Keys (GSFC) 
–  Flight Mechanics – Dan Murri (LaRC) 
–  Guidance, Navigation, and Control - Neil Dennehy (GSFC) 
–  Human Factors - Cynthia Null (ARC) 
–  Life Support / Active Thermal - Hank Rotter (JSC) 
–  Loads and Dynamics - Curt Larsen (JSC) 
–  Materials - Bob Piascik (LaRC) 
–  Mechanical Systems – Joe Pellicciotti (GSFC) 
–  Non-Destructive Evaluation - Bill Prosser (LaRC) 
–  Passive Thermal – Steve Rickman (JSC) 
–  Propulsion – Roberto Garcia (MSFC) 
–  Software - Mike Aguilar (GSFC) 
–  Structures - Ivatury Raju (LaRC) 

•  Four additional disciplines to be added pending available funding 
–  Space Environments   -  Cryogenics 
–  Systems Engineering   -  Instruments and Sensors   

NASA Technical Fellows 
Disciplines 



Engineering Excellence 6 

NESC Resident Engineer Program 

•  Creates an opportunity to allow early 
career participants to gain hands on 
experience 

–  Provide a technically diverse learning 
experience for resident engineers within 
the NESC organizational framework 

–  Gain first-hand experience working with 
NASA technical experts and leaders 

•  Builds upon the principles of the MLAS 
Resident Engineer model 

•  Benefits the Agency by connecting to a 
younger generation and providing a 
fresh perspective to technical activities 

•  One year detail assignment for GS-12’s 
and 13’s 

2009–2010 NESC Resident Engineers 

2010-2011 NESC Resident Engineers 



Engineering Excellence 7 

NESC Technical Highlights 

Crew Module Water Landing 
Modeling Assessment 

Shell Buckling 
Knockdown Factor 

Testing 



Engineering Excellence 8 

NESC Technical Highlights 
Support for Chilean Miners 

Rescue Effort 

NHTSA Toyota Sudden 
Acceleration Investigation 



Engineering Excellence 9 

NESC Leading Agency-Wide Teams 
Gaining Hands-On Experience 

In Design, Development, and Test 

CEV Smart Buyer 

Alternate Launch Abort System 

Composite Crew Module 

Max Launch Abort System 



Engineering Excellence 10 

NESC Leading Agency-Wide Teams 
Max Launch Abort System 

 Develop an alternate launch abort system design as risk mitigation for the 
Orion LAS and demonstrate the concept with a pad abort flight test. 

10 



Engineering Excellence 11 

NESC Leading Agency-Wide Teams 
Composite Crew Module 

 Design and build a 
composite crew module to 

gain hands-on design, 
build, and test experience. 

NESC Leading Agency-Wide Teams 
Composite Crew Module 



Engineering Excellence 12 

Contributions to the Agency 

•  After 7 years and 400+ technical assessments the NESC has become the  
“value added” independent technical organization for the Agency 

•  The NESC model provides an excellent 
example of the benefits of bringing 
together diverse technical experts to 
solve the Agency’s most difficult 
problems 

•  Creative, robust technical solutions 

•  Stronger checks and balances 

•  Well informed decision making 

•  The NESC has fulfilled a role for off-line 
design, development and test to provide 
alternate solutions, gain valuable hands-
on experience, and help train the next 
generation of engineers 



Engineering Excellence 13 

A Challenge for Statistical Engineering Community: 
Leveraging Limited Data 



Engineering Excellence 14 

•  Problem 
–  Catastrophic failures of launch vehicles during launch and ascent are currently modeled 

using equivalent TNT estimates 
–  This approach tends to over-predict the blast effect with subsequent impact to launch 

vehicle and crew escape requirements 
–  Work has begun on a less-conservative model based on historical failure and test data 

coupled with physical models and estimates 

•  Challenge 
–  Revised approach requires a statistical assessment of historical databases 
–  NESC was asked to conduct a peer review of the work and provide findings and 

recommendations 

Case Study: Launch Environments 



Engineering Excellence 15 

Case Study:  Launch Environments 



Engineering Excellence 16 

The Challenge 

  Challenge:  Agency senior leaders need timely inputs to make well 
informed decisions, often with limited data. 

  What can the statistical engineering community do to help? 

  What tools/methods are available or can be developed to deal with 
small data sets for real-time problem solving? 

  How can statistical information be communicated more clearly to 
decision makers outside of the community? 

  How can the community engage earlier in issue resolution to help guide 
the testing and data collections? 



Developing, Fielding, and Sustaining America’s Aerospace Force 

I n t e g r i t y  -  S e r v i c e  -  E x c e l l e n c e 

Truths, Darn 
Truths, and 
Statistics 

Dr. Ed Kraft AEDC/CZ 

Presented at the  
NASA  Statistical Engineering 

Symposium 
Williamsburg, VA 

3-5 May, 2011 

Approved for Public Release, Distribution Unlimited; AEDC PA #2011-064 



Objective 

•  Shift image from lies, damn lies, and statistics to 
 Truth – right answer achieved in an experiment 
 Darn Truth – defined risk at key leverage points in 

acquisition 
 Statistics – disciplined approach to identifying and 

managing risk 

It is less about statistical theory and more about 
how we increase systems engineering 

effectiveness during defense acquisition using 
statistical tools 



Targeting Five Key Leverage Points  
Marked by Events – Mired by Lack of Effectiveness 

1. Technology Maturity  
@ Milestone B 

2. Design Closure 
@ CDR 

3. Late Defects 
4. IOT&E 
Pause Test 
Rate 

CycleTime 

Average 
Fleet  
Age 

Systems 
Delivered 

5. Suitability 

RDT&E Fraction is 
revealing metric 

RDT&E$/Total $ 



Acquisition Cycle Time  
Key T&E Effectiveness Parameter 

•  Workload – Process driven, currently ~22,000 of wind tunnel 
testing and 13,000 of propulsion cell testing 

•  q (inverse of rework) – Process driven, typically have 10 
structural failures found in flight; control surface resizing 

•  Capacity – Budget driven, availability x staffing x throughput 

Cycle Time  ~          Workload 
q · Capacity 

50% reduction in wind tunnel costs equates to just a few  
tenths of a percent reduction in program costs – 
Reducing acquisition cycle time by a month could save 
more than the cost of the entire wind tunnel campaign 

Kraft, Edward M. “ Integrating Computational Science and Engineering with Testing to Re-engineer the Aeronautical Development 
Process,” AIAA Paper 2010-0139 , January, 2010. 

Kraft, Edward M. and Huber, Arthur F II “A Vision for the Future of Aeronautical Ground Testing,” The ITEA Journal of Test and 
Evaluation, Vol 30, No 2, June 2009. 



Streamlining Testing at the Campaign Level 
New T&E Tools + DOE 

Computational Science 
 and Engineering Dynamic Trajectories 

“Fly the Mission” 
Ground Testing 

Flight Testing 

Common Thread 
System ID 

Techniques 
Estimation Theory 

Quantify Effectiveness of Testing 

DOE 
• Data Merge/Data Mine 
• Response Surface Analysis 
• Variance Reduction Strategy 

Value of T&E 

Kraft, Edward M. “ Integrating Computational Science and Engineering 
with Testing to Re-engineer the Aeronautical Development Process,” 
AIAA Paper 2010-0139 , January, 2010 



Reducing Late Defect Discoveries 
Bayesian Statistics + DOE 

Effect 2 
Structural Flaw  
Found In Flight 

Cause 1 
Design Flaw 

Cause 4 
Manufacturing/ 
 Assembly Flaw 

Cause 3 
Ground Test 

Flaw 

Cause 2 
Analysis 

Flaw 

Effect 1 
Prototype 

System Flaw 

P(C3) P(C2) P(C1) 

P(C4) 

P(E1|C3) P(E1|C1) 

P(E1|C2) 

P(E1|C4) 
P(E1) = Σ  P(Cn) · P(E1|Cn) 

P(E2|E1) 

DOE Power Coefficients? 

P(θ) P(θ|y) 

P(y|θ) 

Bayesian Learning Model? 

Current 
Knowledge 

Updated 
Knowledge 

New Information 
Model/Data 

Increasing 
Costs of 
Defects 

B
ay

es
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n 
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ra
m
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er
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at
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Probabilistic Incremental Development 
Merging Modeling and Testing 

Ground Test Modeling 

Flight Test 

Code 
Development 

Unit 
Experiments 

Code 
V&V 

Design 
Code 

Incremental  
Unit Experiments 

Incremental 
Code V&V 

Baseline 
Data Base Prototype 

Computed Data 
Prototype 

Development Tests 

Subscale 
Flight Tests 

Incremental 
Prototype Tests 

Computed 
Increments 

Flight 
Performance 

Range = V X (1/SFC) X (L/D) X ln (We/Wf) 

Propulsion Aerodynamics Structures 

System Level Metrics 

Discipline Metrics 
•  Isp 

• Inlet efficiency 
• Combustion 
efficiency 

• Thrust 
•  Etc. 

Bayes Theorem 

Recursively use all experimental data to V&V models 

Evidence Theory 

Baseline + 
Increments 

Adapted/Merged from: 
• Kraft, E. M., Chapman, G., "A Critical Review of the 

Integration of Computations, Ground Tests, and 
Flight Test for the Development of Hypersonic 
Vehicles," AIAA-93-51 01, Munich, Germany, Nov. 
30-Dec. 3, 1993 

• Mantis, G.C., Mavris, D. “A Bayesian Approach to 
Non-Deterministic Hypersonic Vehicle Design,” 
AIAA Paper 2001-01-3033, 2001. 

• Roy, C.J.,  Oberkampf, W.L. “A Complete 
Framework for Verification, Validation, and 
Uncertainty Quantification in Scientific 
Computing,” AIAA Paper 2010-124, Presented at 
the 48th AIAA ASM Conference, Orlando, FL, 
January 2010. 

Aleatory Uncertainty 

Epistemic Uncertainty 



Summary 

•  Statistics and DOE is an increasingly important 
tool in T&E – best current value is a priori 
definition of data quality required 

•  T&E Community gaining expertise in DOE 
•  Applications of DOE in isolated tests currently 

produces marginal return to a program 
–  Not pre-planned in TEMP 
–  Inertia of conservative, legacy processes 

•  Integration of DOE with new T&E tools, 
Estimation Theory, and Bayesian Logic could 
amplify impact of DOE 

•  Best ROI for DOE needs to be based on 
acquisition program cycle time 



Statistical Research – FosteringStatistical Research – Fostering 
Mutually Beneficial Collaborations

Christine M. Anderson‐Cook, Ph.D.
S i i l S i G (2004 )Statistical Sciences Group (2004‐present), 

Los Alamos National Laboratory

P i l F l b Vi i i T hPreviously, Faculty member at Virginia Tech 
(1996‐2004)



History of LANL Collaboration with 
dAcademia

• Visiting Faculty Program in Statistical Sciences Group at LANL for 
h fmany years with visitors from many universities

• We recognized the need for expertise from university faculty to:
– Broaden our expertise base
– Broader perspective of where our problem fits into existing work
– Provide validation and feedback for new research
– Opportunity to publishpp y p

• Characteristics of LANL statistics work:
– Need “good solutions” in a timely fashion  (sometimes “ideal 

l ” l bl kl h)solution” not available quickly enough)
– Reoccurring themes and problems
– Nearly endless supply

Slide 2

LANL Statistics Group and ISU Department of Statistics received the 
ASA SPAIG (Statistical Partnerships between Academia, Industry and 
Government) Award for our multi-year collaboration



What is a Successful Academic‐
I d G ll b i ?Industry‐Government collaboration?

• From the Academic point of viewp
– Funding (summer salary and metric of success for 
universities)
Good problems and data– Good problems and data

– Publications
– Experience for graduate students and facultyp g y

• From the Industry and/or Government point of view
– Access to expertise
– Availability of time to work on problems
– Excellent solutions
– Publications (sometimes yes sometimes no)Publications (sometimes yes, sometimes no)

Slide 3



Areas of Collaboration: 
d l fDesign and Analysis of Experiments

Slide 4



Areas of Collaboration: 
llResource Allocation

Slide 5



Areas of Collaboration: 
Measurement Systems

Slide 6



Areas of Collaboration: 
ReliabilityReliability

Slide 7



What makes it successful?What makes it successful?

• The right people!!!e g t peop e!!!
• Ongoing projects – spanning multiple years
• Good vision to identify reoccurring mission‐Good vision to identify reoccurring mission
critical areas (LANL) that are interesting, new and 
publishable (Academic partners)

• Natural match of expertise with problems
• Flexible timelines
• Opportunities for publications
• Funding not a major concern 

Slide 8



Statistical Research - Industrial, Academic and 
Government Collaborations

Carolyn B. Morgan, Ph.D.

Professor, Department of Mathematics

Hampton University, Hampton, VA

With significant engineering input

From Dr. Morris Morgan, III



Previous Industrial and Academic 
Collaborations

• Statistician at GE Global Research (1972-1996)

 Applied statistical methods to technically significant 
problems throughout the company (medical systems, 
GE Profile dishwasher design team, product reliability,..)

Collaborated with Dr. Morris Morgan, chemical engineering 
professor at Rensselaer Polytechnic Institute with

13 years of prior experience with General Motors, 
Monsanto and GE Global Research and research projects with 
Aberdeen Proving Ground

Presented over 20 technical talks on statistical research 
work at ASA and AICHE national meetings and 15 
technical papers



Current Industrial, Academic and 
Government Collaborations

•Transitioned to Hampton University in 1996

Chair, Department of Mathematics

Hampton Representative to Universities Space 
Research Association (collaborative membership 
organization of universities and other research 
organizations that cooperate with each other, with 
the United States government, and other entities to 
develop knowledge associated with space science 
and technology).

• Initiated interdisciplinary research with the School of 
Engineering and Technology to provide research 
opportunities, tuition and stipend support for STEM 
undergraduates and Applied Mathematics graduate 
students in the Statistics track



Statistical Research Presentations

Morgan, C. B. and Morgan, M. H. (2000). A Statistical Model of the Drag Coefficient in an 
Engineering Transport System, Joint Statistical Meetings, 2000  Indianapolis, IN (contributed 
paper).

Morgan, C. B. and Morgan, M. H. (2001). Modeling the Effect of Cycle Time Distribution on 
System Performance, Joint Statistical Meetings, 2001 Atlanta, GA (contributed paper).

Morgan, C. B. and Morgan, M. H. (2002). Time Series Analysis of a Closed-Loop Electro –
Spouted Bed, Joint Statistical Meetings, 2002 New York City (contributed paper).

Morgan, C. B. and Morgan, M. H. (2003). Predicting  the Onset of Flow Instabilities Using 
Time Series Methods, Joint Statistical Meetings, 2003 San Francisco, CA (contributed paper).

Morgan, C. B. and Morgan, M. H. (2004). Statistical Modeling of Flow Instabilities in an 
Engineering System, Joint Statistical Meetings, 2004 Toronto, Canada (contributed paper).

Morgan, C. B. and Morgan, M. H. (2005). Statistical Investigation of Chaotic Data Streams 
Using a Haar Wavelet Transform, ASA Joint Statistical Meetings, 2005 Minneapolis, MN 
(contributed paper).



Statistical Research and  Engineering 
Grant Activities

 NASA PACE-“MSET Educational Grant
1997-1999, $300,000/3 yrs, Co-PI

 GE Fund- “GETMET” Educational Grant
2000-2002, $150,000/2 yrs. Co-PI

 NASA- “Aero-Propulsion Center” 
2004-2008, $4,800,000/4yrs, 
Dr. Morris H. Morgan, III Center Director

 National Security Agency - “Statistical Data Mining 
and Analysis of Large Drifting Data Stream”

2004-2006,  $153,000/2yrs, Co-PI
 Lockheed-Martin & Orbital Sciences

2010-2011, $400,00/1yr, Co-PI



Hampton’s Aero-Propulsion Center 
• Major NASA initiative to integrate statistical thinking, 

engineering and methods in aerospace engineering

• NASA funded project to advance research on

 Improving Scramjet Combustion Efficiencies

 Improving Lift to Drag Ratios of Wave-Rider Designs 

Validating Numerical Simulations & Wind Tunnel Studies

 Improving Signal Masking and Recovery

• Hampton Research Team

Engineering: M. Morgan (Diretor), D. Lyons, J. Akyurtlu 
A. Akyurtlu & V. Khaikine

Statistics: C. Morgan



Improving Scramjet Combustion via Pylon 
Modifications



Star-Shaped Inlet Mixing Efficiencies



Added Dimensional Variable in Lift/Drag Ratio 



Lockheed Martin’s X-33 Design



Improving Wave-Rider Designs   



Validating Numerical Simulation & Wind 
Tunnel Studies





Advantages of Industrial, Academic 
and Government Collaborations

• Key to addressing challenging problems that 
require interdisciplinary teams (engineers, 
statisticians, scientists, …) and large 
resources (equipment, tools, ..)

• Provides students and faculty “outside-the-
book” research experiences 

• Serves to attract future students to STEM careers 

• Provides funding for undergraduate and 
graduate research and faculty

• Yields opportunities for publications, 
presentations, etc.



Statistical Research:
Some NASA Perspectives

Ray D. Rhew
NASA Langley Research Center

NASA Statistical Engineering Symposium
May 5, 2011



Opportunities and Challenges

• Opportunities
– As statistical thinking continues to be infused into NASA projects 

(Exploration, Science and Aeronautics)
New research opportunities will be revealed

 Fundamental principles and theoretical derivations
Application of existing techniques to unique problems

Many avenues to obtain research capabilities
 In-house personnel – stay current for future opportunities 

and collaborative efforts
Contracts – industry and academia
Research Announcements
Graduate research, post doctoral, undergraduate research



Opportunities and Challenges

• Challenges
– Educating organizations and projects on statistical 

engineering and its benefits
– Clearly defining research opportunities
– Securing resources within project environments (schedule 

and resource pressures)
– Timely execution
– Coordinating fiscal and academic calendars
– Communicating benefits and applications



Statistical Engineering:
What  Why and HowWhat, Why and How

Panel Discussion

Moderator: Christine Anderson-Cook, LANL

Panelists:
Ronald Snee, Snee Associates

Geoff Vining, Virginia Tech
Mark Zabel, Straight Line Performance Solutions

NASA Statistical Engineering Symposium May 3-5, 2011



Statistical Engineering Session Format

• What? (Led by Ron Snee)( y )
– Examples, Definition, as a Discipline

Why? (Led by Mark Zabel)• Why? (Led by Mark Zabel)
– Benefits to the individual statistician, team 

member and the organizationmember and the organization

• How? (Led by Geoff Vining)
– Roles and Challenges

Format: 30 min presentation, 15 min additional 
comments from other panelists, open p , p
discussion 



Statistical Engineering Ronald Snee

Founder and President of Snee Associates• Founder and President of Snee Associates

• 24 years at Duponty p

• Author of 3 books on Statistical Thinking and LSS 
ith R H lwith Roger Hoerl

• Academician in the International Academy forAcademician in the International Academy for 
Quality, Fellow ASQ and ASA

R i i t f ASQ Sh h t d G t M d l• Recipient of ASQ Sherhart and Grant Medals

• Author or more than 225 papers in performanceAuthor or more than 225 papers in performance 
improvement, quality, management and statistics



Statistical Engineering G Geoff Vining

• Professor and former Department Head in• Professor and former Department Head in 
Department of Statistics at Virginia Tech

• Former editor of Journal of Quality Technology, and 
Quality Engineering

• 2010 ASQ Shewhart Medal recipient

• Winner of ASQ Brumbaugh and Lloyd Nelson award

• Author of 3 textbooksAuthor of 3 textbooks

• Internationally recognized expert in the use of 
d i d i t f lit d d ti itdesigned experiments for quality and productivity 
improvement



Statistical Engineering Mark Zabel

• President and Co founder of Straight Line• President and Co-founder of Straight Line 
Performance Solutions

• Statistical Engineer and Certified Master Black Belt

• Educated mentored and coached more than 2250• Educated, mentored and coached more than 2250 
LSS professionals

• 20+ years of experience in LSS, statistics, analytical 
methods, software development and process re-

i iengineering

• Led design, redesign and improvement projects g , g p p j
resulting in hundreds of millions of dollars of 
delivered value for a wide range of businesses



Wh t i  St ti ti l E i i ?What is Statistical Engineering?

Ron SneeRon Snee



Statistical Engineering Some Examples

• DMAIC Problem Solving and Improvement Framework
– Links and sequences a variety of statistical and non-statistical toolsq y

• DuPont Product Quality Management System
– Integrates a variety of tools into a comprehensive quality system

• Strategy of Experimentation
– System that  links a variety of designs into an overall strategy

• GE Collections System
– Process monitoring and improvement system that uses a variety of 

tools including flowcharts, control charts, Pareto charts and DOE  g , ,

• Pharmaceutical and Biotech Quality by Design
– Integration of process modeling, process and measurement control 

and process optimization creating process understanding

Major Impact is Created by Linking and Sequencing  
Many Different Tools into a System



Statistical Engineering Statistical Engineering Definition

• Statistical engineering: 
– The study of how to best utilize statistical concepts, methods, and tools y p , ,

and integrate them with information technology and other relevant 
sciences to generate improved results (Hoerl and Snee 2010)

– Trying to build something with the statistical science parts listy g g p

Notes

• For this to be a true engineering discipline as opposed to just a sexier termFor this to be a true engineering discipline as opposed to just a sexier term 
for applied statistics, there must be a dynamic theoretical foundation based 
on rigorous research, just as there is for electrical engineering, mechanical 
engineering, and so ong g,

• This definition does not refer to application of statistics to engineering
– Statistical engineering can be applied to improving anything

• This is a different definition than that used by Eisenhart, who we believe 
was the first to use this term in 1950



Statistical Engineering Statistical Engineering as a Discipline

Strategic:Strategic:
Statistical Statistical 
ThinkingThinking

Statistical
E i i

Tactical:Tactical:

ThinkingThinking

St ti ti l St ti ti lSt ti ti l

Engineering

Tactical:Tactical:
StatisticalStatistical

EngineeringEngineering

Statistical
TheoryTheory

StatisticalStatistical
PracticePractice

Operational:Operational:pp
Statistical Methods & ToolsStatistical Methods & Tools

Statistical Engineering - Discipline that Studies How to Drive 
Greater Impact from Existing Science and Theory of Statistics.  



Statistical Engineering How Is It Different?

Problem Dimension
Traditional
Applied

Statistical 
EngineeringProblem Dimension Applied 

Statistics
Engineering

Criticality to the Organization Low ‐Medium High

Impact – Financial, Process 
Performance, Customer, Social, and 
Environmental

Low ‐Medium High
Environmental

Number of Departments, Groups, or 
Functions Involved

Few Several

Complexity – Technical, Political Low High

Sources of Information and Data Few Many

Number of Tools Involved Few Many

Use of Information Technology Some Essential

Need for Sustainability May be needed Essential



Statistical Engineering

Wh  St ti ti l E i i ?Why Statistical Engineering?

Mark ZabelMark Zabel



Statistical Engineering Proliferation and Accessibility of Data

Yesterday Today Tomorrow



Statistical Engineering Statistical Engineers Connect

Business Acumen

Math / StatMath / Stat
Tools & MethodsAcademic 

Knowledgeg

Customers Team Business / OrganizationCustomers Team Business / Organization



Statistical Engineering Benefits to the Individual Statistician

Individual
• Greater collaboration and more 

acceptance of methods

Individual
Statistician

• Deliver better results
• Experience drives new applications for 

academic work
• More opportunities for leadership 

itipositions
• Higher value to business  & 

organizationorganization



Statistical Engineering Benefits to Teams

Statistical methods strengthenTeam Statistical methods strengthen 
team delivery

B tt b i

Team

• Better business cases
• Better data and metrics

M b t d l• More robust models
• Better known uncertainty and risk

Effi i t d i d l i• Efficient design and analysis
• Better reporting and other quantitative 

deliverablesdeliverables
Statistician



Statistical Engineering Benefits to the Business / Organization

Business

• Better delivery = greater ROI
• Better and more informed decisions• Better and more informed decisions
• Lower uncertainty & risk
• Reduced costs• Reduced costs
• Higher degree of fact-based 

engagementengagement
• Better analytics
• Added insight into business andAdded insight into business and 

customer needs and wants



Statistical Engineering Benefits to Customers

Customers

• More robust, higher quality 
prod cts & ser icesproducts & services

• Business partners who make better 
decisionsdecisions

• Wants and needs are better known 
and better addressed

• Clearer insight
• Better decisions



Statistical Engineering The World

• Greater acceptance and 
understanding of statistical thinkingunderstanding of statistical thinking

• Clearer understanding of risks
• Catastrophes avoidedCatastrophes avoided
• Better investments 
• Continued human progressContinued human progress



Statistical Engineering

Th  H  f St ti ti l E i i ?The How of Statistical Engineering?

Geoff ViningGeoff Vining



Statistical Engineering Cultural Challenges

• Agency
– Past: Mechanical – Aerospace Driven

- “Deterministic” Universe
- Statistics not Always Appreciated

– Current:  Need to Quantify Uncertainty
- Major Driver:  Risk Management
- Agency Requirements:

Rigorous• Rigorous
• Scientifically defendable

- Provides an Excellent Opening for Statistical p g
Engineering 



Statistical Engineering Agency Challenges

• Engineering
– Example:  To Estimate a Straight Line, Why Do 

We Use Ten or More Un-Replicated Levels?
- “Replicates introduce error” (actually, they  provide 

estimate of true error)
Only two levels needed to estimate the line; three levels- Only two levels needed to estimate the line; three levels 
allow estimate of lack-of-fit 

– Need for Statistical ThinkingNeed for Statistical Thinking
- All work occurs in systems of interconnected processes
- Variation exists in all processesp
- Keys to success:  understanding and reducing variation



Statistical Engineering Agency Challenges

• Statisticians
– Passive/Active
– Periphery/Centralp y
– Purely Data Analysis/Problem Solver

- Problem Definition/Clarityy
- Systems Thinking
- Tactical Deployment of “Statistical Tools”

– Non-Essential Team Member/Full Colleague
– Perception:  Part of the Problem/Part of the p

Solution



Statistical Engineering Summary of Challenges

• Complex Problems Require Appropriate SolutionsComplex Problems Require Appropriate Solutions
– Team Approach to Solutions
– Clear and Precise Problem Definitions– Clear and Precise Problem Definitions
– Systems Thinking

Understanding Sources of Variation– Understanding Sources of Variation
– Appropriate Data

T ti l D l t f A l ti– Tactical Deployment of Analytics

• Statistical Engineering Is an Appropriate Approach!g g pp p pp





Capabilty Strategy

2

LEADERSHIP

TECHNOLOGYENGINEERING

•Seek key leadership roles:
• Agency, Center, Program/Projects
• Professional Organizations

•Participate in 
•Early Innovation
• Game Changing & Cross 
Cutting Technologies

•Partnerships
•Academia
•Industry

Provide key engineering 
expertise and services to 

projects to ensure mission 
success.



Deliberate Excellence 

• Overarching strategy for technical excellence 
and quality that is being worked regularly 
despite the day-to-day activities

• Establish Organizational long term strategy as 
a growth in technical capability

• Invest in People
– Most Valuable Resource

– Build Technical Expert/Technical leadership

• Invest in Tools/Procedures/Practice



Director
Lesa Roe

Deputy Director
Steve Jurczyk

Chief of Staff
Cynthia C. Lee

MISSION

Aeronautics Research Science Exploration and Space 
Operations

Systems Analysis and 
Concepts

Strategic Relationships

MISSION SUPPORT

Research Services ResearchEngineering Center Operations

George B. Finelli

Safety and Mission 
Assurance

Systems Management

Procurement Chief Counsel Equal 
Opportunity

Human Capital 
Management

Strategic 
Communication

Chief Financial 
Officer

Chief Information 
Officer

NASA Langley Research Center

Flight Projects

Ground Facilities and 
Testing

The Langley Research Center (LaRC) pioneers the future in space exploration, scientific discovery, and aeronautics through research 

and development of technology, scientific instruments and investigations, and exploration systems.
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ASEB’s Functional Statement

The Aeronautics Systems Engineering Branch provides a 
lead role in providing experimental hardware, advanced 

sensors and measurement systems using a  systems 
engineering approach that enable our customers to gain 

knowledge by simulation of  aerospace concepts for 
aerodynamic and structures research. 



Investment in People

• Encouragement of 

– Innovation

– Education

– Professional Society Participation

– Affiliation with Academia

– Mentorship with Students

• Publish

• Difficult Technical Challenges

– Is it a big enough problem?



80/20 Rule

• 20% of employee’s time dedicated to 
capability growth

– Training

– Publishing

– Mentoring

• 80% to Product Delivery



Planning and Execution Model

Decisions

Knowledge

Data

Models

Experiments

Requirements Flow Down
Things need to Know 

How well we need to know?

Project Execution
Things need to Do

Normal Request



Heilmeier Questions
Excerpt from IEEE Spectrum Article, June 1994

• What are you trying to do?

– Articulate your objectives using absolutely no jargon

• How is it done today, and what are the limitations of current practice?

• What’s new in your approach, and why do you think it will be successful?

• Who cares?

– If you are successful, what difference will it make?

• What are the risks and the payoffs?

• How much will it cost?  How long will it take?

• What are the midterm and final “exams” to check for success?



Statistical Engineering Questions
Program and Project Definition

• What are the precise objectives?
– Are the objectives quantifiable, detectable, measurable?

– What are we seeking to learn, new knowledge sought?

– How will we know when we have learned it?

Technical Risk Management

• How well do we need to know the answer(s) (precision)?
– What risk are we willing to accept if we are wrong about or conclusions?

– What are the consequences if we are wrong?

Planning and Execution

• Do the methods support rigorously link to the objectives and risk?

• Does the allocation of resources support the objectives and risk?
– Are the resources justifiable and defendable?

Questions apply recursively in the vertical direction through systems and 

subsystems and horizontally throughout project phases



Building Capability

• Vision

– Where are you going?

• Deliberate Excellence

– Plan to Excellent

• People-

– Most Valued Capability

• Challenging work-

– Hard to solve problems



Infusing Statistical Engineering 

Peter A. Parker, Ph.D., P.E. 
National Aeronautics and Space Administration 

 Langley Research Center Engineering Directorate 
Aeronautics Systems Engineering Branch 

May 4, 2011 
NASA Statistical Engineering Symposium 

Williamsburg, Virginia 



Statistical methods and tools

Statistical
engineering

Statistical
thinking

Strategic

Tactical

Operational

Statistical Engineering at NASA 

•  Engineering discipline to efficiently gain knowledge through strategic 
resource investment 

•  Applies systems thinking to high-level, well-defined objectives 

•  Synergistic combination of existing tools to solve complex problems 

Parker (2008), “Infusing Statistical Engineering in Programs and Projects,” NASA LaRC White Paper 
Figure: Hoerl, R.W. and Snee, R.D. (2010) ”Closing the Gap,” Quality Progress 

Drives statistical thinking 
and guides statistical tools 

Mission Formulation 

Requirements 

Execution 



Defining Rocket Motor Requirements 

Statistical Engineering Applied 

–  System level – studied apparatus, available theory and data 

–  Integrated design of experiments with force measurement expertise 
–  Measured roll torque, quantified uncertainty, reduced design risk 

•  Internally generated ballistics could not be rigorously isolated 

–  Modifications to the firing duty cycle fully achieved objectives 

•  Embedded in processes, software, and training 

•  Leveraging heritage design for a new 
application and requirements 

Original Question 

•  How to measure roll torque during a firing 
to size the reaction control system? 

•  Impacts requirements, cost (lifecycle), 
schedule, volume, mass (payload) 

Gentz (NESC), Roberts (NESC), Parker (LaRC), Rhew (LaRC), Jones (MSFC), McLennan (ATK) 



Motivation for Statistical Engineering 

•  Consistent methodological framework for research and development 

–  teachable, repeatable, scalable - not idiosyncratic 

•  Benefits of successful implementation 

–  Improved Decision-making - risk-informed and defendable 

–  Technical excellence – unequivocally define objectives, integrity of 
results/knowledge obtained 

–  Organizational excellence - strategically applying resources 

•  Opportunity for statisticians to make greater contributions in 
achieving strategic organizational objectives 



Changing the Role of the Statistician 

Statistician as 
Helper 

Statistician as 
Colleague 

Statistician as 
Leader Pr
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Figure: Hunter, W.G. (1981) “The Practice of Statistics: The Real World Is an Idea Whose Time Has Come,” The American Statistician 

Required for Effective 
Statistical Engineering 



Starts with Fundamental Questions 

•  Heilmeier used as a preflight checklist for successfully launching a research 
project to curb and clarify both the enthusiasm of the researchers and to 
evaluate the resource demands of the project managers 

•  What are the precise objectives? 
–  What are we seeking to learn? 
–  Are the objectives quantifiable, detectable, measurable? 
–  What is the impact if you are successful? 

•  How well do we need to know the answers? 
–  How much risk are we willing to accept in being wrong? 
–  What are the consequences if we are wrong? 

•  Do the methods rigorously link to the stated objectives and risk? 
–  Are the resources justifiable and defendable? 

Questions apply recursively in the vertical direction down to systems 
and subsystems and horizontally throughout project life-cycle 

Shapiro (1994) “George H. Heilmeier,” IEEE Spectrum 



Using NASA Satellite Data and Models 
for Socioeconomic Benefits 

•  Research into using ozone satellite measurements (Tropospheric 
Ozone Residual) to improve soybean crop yield 

Original Question 

•  Can we develop a correlation between satellite measurements and 
ground-based measurements of ozone? 

Statistical Engineering Applied 

•  Synthesized multidisciplinary team member ideas on the objectives to 
clearly define the research questions and approach 

•  Satellite and ground provide different types of useful information 

Fishman (LaRC), Parker (LaRC), Vining (VT), Ainsworth (USDA), et al. 

•  Modeled yield as a function of temperature, 
soil moisture, and ozone (satellite and 
ground) 

•  Impact: Provided new framework, impetus 
for additional research 



Vital Implementation Elements 

•  Leadership 

–  Requires leadership to convert a “good idea” into “the new way we 
do business” 

–  Articulate motivation, communicate expectations, be accountable 

•  Core Competency 

–  Discipline experts matrixed across programs/projects 

–  Multidisciplinary skills are required 

–  Teaming and communication skills are critical 

•  Equipping People with Knowledge and Tools 

–  Broaden awareness of this discipline 

–  Consult with researchers and lead engineers, equip practitioners 
•  To be seen as value-added and measure effectiveness 

Hu#o, G. (2005), “White Paper 53rd Wing DOE Change IniPaPve, ” and personal communicaPons 
Ko#er, J.P. (1996), “Leading Change,” Harvard Business Press 



Our Progress at NASA Langley 

•  Building a statistical engineering capability takes a deliberate strategy 

•  Obtained leadership support through demonstrated benefits 

•  Growing a core team with multi-disciplinary competence 

•  Broadened knowledge of the discipline by recognized project impact 

Areas we need to improve 

•  Inextricably link statistical engineering to organizational objectives 

•  Assist leadership to further engage and commit with specific actions 



Our Vision for Statistical Engineering 

•  Tactical Discipline that 

–  Drives critical, statistical thinking at the strategic level 

–  Guides statistical methods and research at the operational level 

•  Improves our effectiveness in accomplishing our mission 

–  Defines the right questions 

–  Guides strategic resource investment 

–  Accelerates research and development 

•  Not a replacement for good science and engineering 

•  To promote best practices within our Agency and profession 



Topics in Response Surface Model 
Adequacy Assurance and Assessment

Richard DeLoach
NASA Langley Research Center

The NASA Statistical Engineering Symposium
Williamsburg, VA

May 3-5, 2011



Langley Research Center

An Alternative Concept of Quality

in Experimental Aeronautics
• Traditional concept of quality in wind tunnel testing

– Data-centric: “Quality” means “Data Quality” in traditional testing

– Associated with low levels of unexplained variance in a data sample
• An alternative concept of quality

– Introduced to the Langley experimental aeronautics community in 
the mid-90’s as the Modern Design of Experiments (MDOE)

– Associated with inference error probability
– “Quality” means “getting the right answer”

• Low probability of inference error
• Independent of quality of the data



Langley Research Center

Response Surface Modeling
• Response Surface Models are mathematical functions 

representing responses (forces/moments, etc.) as a 
function of independent variables (AoA, Mach No., etc.)

• Quality is cast in terms of modeling adequacy
– For an adequate model, no more than a specified percentage  of 

response predictions are outside acceptable tolerance limits
– Quality, or model adequacy, must be both assured and assessed

• Model adequacy is assured through the design by 
– Data volume specification (How many points)
– Site selection within the design space (Which points)
– Number and selection of points to be replicated
– Order in which the points are acquired

• Model adequacy is assessed by examination of residuals



Langley Research Center

An Inference Space

• A Coordinate System
• One axis for each 

variable
• Each point represents a 

unique combination of 
variable levels

• A response surface is 
constructed “over” an 

inference space



Langley Research Center

Design Space Comparisons

OFAT MDOE



Langley Research Center

OFAT and MDOE Response Surfaces

OFAT (100 Pts) MDOE (22 Pts)



Langley Research Center

The Mathematics of Quality Assurance 
and Quality Assessment

ŷ
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Langley Research Center

Reference Distribution Under H0
H0: Null hypothesis that there is no difference

between predicted and measured response (Residual is 0)

ˆ

p

n




 
  
 

y

σ : Standard error in measurement

σ =

: Tolerance

ŷ
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Langley Research Center

Reference Distributions for Residuals
Black – H0: True residual is zero

Red – HA: True residual is borderline unacceptable
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ŷ
z

ŷz

Magnitude of Residual

 is probability of rejecting 
adequate model
 is probability of validating 
erroneous model



Langley Research Center

Data Volume Requirement
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Langley Research Center

Data Volume Formula
Some Practical Difficulties

• The data volume formula depends on five quantities
– Three (p, , and ) can often be specified by the design consultant
– The tolerance, , should be specified by the customer
– The standard measurement error, , should be specified by the 

facility
• The customer often prefers to specify tolerance as a 

multiple of , rather than in absolute terms 
– A customer may feel comfortable saying his tolerance is “2”

– He doesn’t always feel he has to know what “” is to say this
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Langley Research Center

Incorporating Tolerance in Data 
Volume Estimates

• Consider the general case, in which  = K, where K is a 
constant specified by the customer

• Note that a specific “K” may eventually evolve as an 

industry convention (about which more in a moment)
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Langley Research Center

Special Case for Tolerance, 
• We have for the general case in which  = K:

• Let  = 95% LSD (Least Significant Difference)
– This is the smallest difference between two replicated 

measurements that can be resolved with 95% confidence
– It may be regarded as a reasonable tolerance specification

2
z z
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K

  
  

 

95% LSD 2 2 2 2K    

2

1

2 2

z z
n p

  
  

 



Langley Research Center

Model Term-Count Multiplier
Minimum to Resolve 95% LSD with  = 0.05
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Langley Research Center

Model Term-Count Multiplier
Minimum to Resolve 95% LSD with  = 0.05
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Langley Research Center

Another Special Case for 
Tolerance, 

• Let  = 95% PIHW (Prediction Interval Half-Width)
– This is the smallest difference between a physical measurement 

and a model prediction that can be resolved with 95% confidence
– It is a convenient tolerance spec because most curve-fitting 

software packages compute this automatically
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Langley Research Center

Model Term-Count Multiplier
Minimum to Resolve 95% LSD or 95% PIHW with  = 0.05
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Langley Research Center

95% PIHW Tolerance Criterion is More 
Stringent than the 95% LSD Criterion

 95% :  2LSD  Residual

95% :  1
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Langley Research Center

Numerical Scaling Example
Typical OFAT Wind Tunnel Test

• Consider a wind tunnel test in which forces and moments 
are to be estimated as a function of four factors
– Angles of Attack and Sideslip
– Mach Number
– Height (for ground effects)

• Typical OFAT levels might be as follows
– AoA: -5⁰ to +15⁰ in 1⁰ increments (21 levels)

– Sideslip: 0⁰ to +10⁰ in 2⁰ increments (6 levels)

– Mach Number from 0.70 to 0.90 in 0.25 increments (9 levels)

– Height (5 levels)

• Total of 21 x 6 x 9 x 5 = 5670 points (not atypical for OFAT test)

• Standard error in response estimate: 



Langley Research Center

Numerical Scaling Example
Corresponding MDOE Scaling Case

• Assume adequate fits can be achieved over three AoA sub-
ranges and two sideslip sub-ranges with 4th-order models

• A dth-order model in k factors has p terms (including 
intercept), where 

• Assume a 95% LSD tolerance specification:
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Langley Research Center

Numerical Scaling Example, Cont.
• Specify inference error risk tolerances

– Max acceptable probability of rejecting a valid model:  = 0.05
– Max acceptable probability of validating a bad model:  = 0.01

• Look up corresponding standard normal deviates, z,

– For  = 0.05, z = 1.960 (double-sided null hypothesis)
– For  = 0.01, z = 2.326 (single-sided alternative hypothesis)

• Estimate data volume per subspace:

• Estimate total data volume (six subspaces): 6 x 161 = 966

2 2
1 1 1.960 2.326

70 2.296 161
2 2 2 2

z z
n p p
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Langley Research Center

MDOE/OFAT Comparison
• There is a large apparent difference in OFAT and MDOE 

resource requirements
– OFAT: 5670 points
– MDOE: 966 points

• The savings are not that dramatic, however
• MDOE methods invoke certain quality assurance tactics 

to defend against covariate effects

• Covariates are slowly varying, persisting factors that are 
not controlled by the experimenter
– They are generally larger than ordinary random variations
– They are not reproducible from test to test
– They are largely overlooked in conventional OFAT testing



Langley Research Center

MDOE/OFAT Comparison, Cont.
• MDOE quality assurance tactics to defend against 

covariates cost a factor of 1.5 to 2.5 in data rate
– In the time needed to acquire 966 MDOE points, up to 2.5 times 

as many OFAT points might be acquired
– This would be 2.5 x 966 = 2415 points

• The MDOE data acquisition time is thus expected to be 
no more than a factor of 2415/5670 of the OFAT 
requirement, or 42.6% (and could be rather less)

• Note that the scaling resulted in a data volume 
requirement of n = 2.296p

• The MDOE standard error is thus 

ˆ 0.660
2.296

y

p p

n p
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Langley Research Center

Quality and Productivity Comparison



Langley Research Center

Concluding Remarks
• Quality in wind tunnel testing is more properly expressed 

in terms of inference error probability than unexplained 
variance in the raw data
– It is more important to get the right answer, than “good data”

– This imposes a responsibility to articulate tolerance requirements
• There is a mathematical relationship between resource 

requirements and quality requirements
• Each new data point reduces inference error risk

– Too little data means unacceptable inference error risk
– Too much data means wasted resources

• The experimental aeronautics community might consider 
adopting the 95% LSD as a tolerance specification 

• Then data volume in the range of 2 to 3 times the number 
of points needed to fit a model would typically be sufficient





Hybrid Designs: Space Filling and Optimal 

Experimental Designs for Use in Studying Computer 

Simulation Models

Rachel Johnson Silvestrini PhD

Assistant Professor 

Operations Research Department 



Outline

• Computer Simulations 

• Metamodeling

• Types of Experimental Designs

• A Hybrid Experimental Design Approach

• Example Using a ISR Simulation Model  

• Questions 

5/4/11 NSES 2



Computer Simulations

• Computer simulation models are built to 
mimic reality 

• We do not always treat computer simulations 
like reality 

– Lots and lots of experiments are run 

– Many experiments are run that are prohibited in 
the real world

• We do often treat computer simulation results 
as if they were reality 

5/4/11 NSES 3



Types of Simulation Models

• Stochastic

– Output is a random variable 

– Blocking and randomization not an issue, but 

replication is 

• Deterministic

– For a given set of inputs, the output will be the 

same each time the model is run 

– Blocking, randomization, and replication are 

irrelevant 

5/4/11 NSES 4



Illustration and Definitions

5/4/11 NSES 5

Your Simulation or 
Model 

Inputs: xi
(variables that 
you can control) 

Output(s): y
(variable that you 
want to measure) 

- Let’s assume that there is some underlying model:

- This model (often called a metamodel) can be: 
- mechanistic 
- empirical

- linear regression model
- non-linear model
- generalized linear model
- Gaussian process model (aka Kriging) 

- A goal of Experimental Design: find/fit a metamodel

y f (x)

Noise, unknown factors, 
model misspecification



Simulation Needs

• People who run simulation models sometimes have 
trouble choosing what conditions to run (input levels to 
select) in order to fully characterize the input domain

• Additionally, once those conditions are selected, it 
might be difficult to describe the outputs in a 
meaningful way 

• Experimental design and analysis provides a way to 

– Choose conditions to run your model (i.e. select inputs) 

– Find a suitable mathematical model that allows you to 
summarize your input-output data   

5/4/11 NSES 6



Metamodeling: What is it? 

• After we run a computer simulation we would 
like to relate the inputs to the output(s) through 
the use of a closed form mathematical expression 
[1,4]

• Examples of common empirical metamodels used 
in practice: 

– Linear regression models (i.e. polynomial models) 
[1,4]

– Non-linear models (i.e. logistic regression model) [8]

– Gaussian Process models (i.e. Kriging) [4,9]

5/4/11 NSES 7



Experimental Designs

• The choice of experimental design can strongly 
influence how “good” your results are 

• Can create most designs in standard software 
packages such as JMP or Design Expert 

• Require you to list 

– Inputs (including input values or ranges)  

– Output(s)

– Number of runs (trials you are willing to perform)

– If running optimal design – must specify assumed 
model 

5/4/11 NSES 8



Experimental Designs are Based on Goals

5/4/11 NSES 9

Screening
Experiments 
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Modeling 
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A Quick Example: Studying Ohm’s Law 

5/4/11 NSES 10

Circuit 
Simulator 

Resistance (Ohms) Voltage 
Output Current (Amps)

Input Factor Range Variable Type 

Resistance (ohms) [1 – 2] Continuous 

Current (amps) [4 - 6] Continuous 



Experimental Designs are Based on Goals

5/4/11 NSES 11
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Optimal Experimental Design

Optimal Design (examples: D-optimal and I-optimal) 

• Pros
– Great for creating empirical models of many forms (especially 

useful if using the linear regression approach)

– Useful for constrained design spaces 

– Optimal designs for many linear regression models are the 
standard designs (i.e. 2k)

• Cons
– Requires specification of the metamodel before collecting any 

data

– Non-linear optimal designs are dependent on unknown 
parameters 

5/4/11 NSES 12



Space Filling Experimental Design

Space Filling Design (examples: Latin Hypercube and Uniform) 

• Pros

– Fill the design space 

– Useful for unknown metamodel choices 

• Cons

– Don’t cover the corners of the design space 

5/4/11 NSES 13



Experimental Design Approach

• What if you don’t know a priori what type of 
metamodel will work best for your results?

• Is there some type of experimental design that can 
be used assuming you may choose several type of 
metamodels to use? 
– Yes 

– A hybrid design approach that combines optimal 
design with space filling design 

• Provides coverage to the corners of the design space and the 
interior 

• Useful for fitting linear regression models and for fitting 
metamodels you might not have planned for   

5/4/11 NSES 14



Situations Useful for Hybrid Design 

• Situation 1: You are running a simulation experiment and 
would like good coverage of the design space. You are not 
sure what metamodel you will use, but think that a linear 
regression model choice is among the possibilities 

• Situation 2: You are running a simulation experiment and 
will most likely fit a linear regression model, but would like 
to simulation some “random” trials to use as either
– Cross-validation or 

– If your model is making bad predictions, points that can be used 
to fit new models 

5/4/11 NSES 15



Research Comparison Method 

• Previous research on these designs compared 
optimal, space filling designs, and hybrid 
designs based on:

– Scaled prediction variance 

• For the linear regression model:

• For the Gaussian process mode: 

– Fraction of Design Space plots [11]: plot the 
empirical distribution function of scaled prediction 
variance over the design region 

– Used in the assessment of prediction capability [8] 
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Example FDS Plot 

• Designs created for the case with 

– 2 input factors 

– 2nd order polynomial 

– Sample size = 10

5/4/11 NSES 17



Hybrid Design Development

• Consider a saturated design for two factors and an anticipated 

main effects and two factor interaction model

• Here is an example of what the I-optimal design (a) and a 

Latin hypercube space-filling design (b) look like and their 

associated FDS plots

5/4/11 NSES 18

a) I-optimal b) Latin hypercube 



Hybrid Design Points

• We augmented the space-filling design with optimal points 

• Why? 

– Wanted the space-filling design because it fills the interior 

region of the design space

– Wanted the optimal design points
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Performance of Hybrid Design 
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ISR Application

• Unmanned systems can play a prominent role in diverse 
information gathering missions such as: 
– Search and Rescue (SAR) 

– Intelligence, Surveillance and Reconnaissance (ISR) 

• Current research on unmanned system search requires the 
use of sophisticated sensing, computation, coordination, and 
communication capabilities  

• This example is based on research conducted by a colleague 
(Timothy H. Chung) and I 

• The work presented seeks to revisit the used of exhaustive 
search strategies as the basis of the search process and 
leverage new probability models as well as experimental 
design to help inform and refine concepts of operations  
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The ISR Simulation

• Consider an area of interest 
with a missing person or a 
target

• A simulator was built to mimic 
an unmanned system searching 
the area 

• The simulator updates 
probabilities about the location 
of the person as a function of 
time and observation

• The goal of the study is to 
study the effect of several 
inputs of interest on five 
response variables 

5/4/11 NSES 22

Lawnmower 
Search



Hybrid Design Approach

• Combined D-optimal design points with uniform design points 

• The inputs are: 

• A picture of the hybrid D-optimal and uniform design in two 

of the factors is illustrated as 
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Results 
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Wishful thinking

• Using inputs or models because they are 

convenient, or because you hope they‟re true



Kansai International Airport

• 30 km from Kobe in Osaka Bay

• Artificial island made with fill

• Engineers told planners it‟d sink [6, 8] m

• Planners elected to design for 6 m

• It‟s sunk 9 m so far and is still sinking

(The operator of the airport denies these media reports)



Variability = aleatory uncertainty

• Arises from natural stochasticity

• Variability arises from

– spatial variation

– temporal fluctuations

– manufacturing or genetic differences

• Not reducible by empirical effort



Incertitude = epistemic uncertainty

• Arises from incomplete knowledge

• Incertitude arises from

– limited sample size

– mensurational limits („measurement error‟)

– use of surrogate data

• Reducible with empirical effort



Suppose

A is in [2, 4]

B is in [3, 5]

What can be said about the sum A+B?

4 6 8 10

The right answer for 

engineering is [5,9]

Propagating incertitude



They must be treated differently

• Variability should be modeled as randomness 

with the methods of probability theory

• Incertitude should be modeled as ignorance 

with the methods of interval analysis

• Imprecise probabilities can do both at once



Incertitude is common in engineering

• Periodic observations
When did the fish in my aquarium die during the night?

• Plus-or-minus measurement uncertainties
Coarse measurements, measurements from digital readouts

• Non-detects and data censoring
Chemical detection limits, studies prematurely terminated

• Privacy requirements
Epidemiological or medical information, census data

• Theoretical constraints
Concentrations, solubilities, probabilities, survival rates

• Bounding studies 
Presumed or hypothetical limits in what-if calculations



Wishful thinking

• Pretending you know the

– Value

– Distribution function

– Dependence

– Model 

when you don‟t is wishful thinking

• Uncertainty analysis makes a prudent analysis



Wishful

thinking

Prudent 

analysis

Failure

Success

Dumb luck

Negligence Honorable 

failure

Good 

engineering



Traditional uncertainty analyses

• Interval analysis

• Taylor series approximations (delta method)

• Normal theory propagation (ISO/NIST)

• Monte Carlo simulation

• Stochastic PDEs

• Two-dimensional Monte Carlo



Untenable assumptions

• Uncertainties are small

• Distribution shapes are known

• Sources of variation are independent

• Uncertainties cancel each other out

• Linearized models good enough

• Underlying physics is known and modeled



Need ways to relax assumptions

• Hard to say what the distribution is precisely

• Non-independent, or unknown dependencies

• Uncertainties that may not cancel

• Possibly large uncertainties

• Model uncertainty



Probability bounds analysis (PBA)

• Sidesteps the major criticisms 

– Doesn‟t force you to make any assumptions

– Can use only whatever information is available

• Bridges worst case and probabilistic analysis

• Distinguishes variability and incertitude

• Acceptable to both Bayesians and frequentists
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Uncertain numbers

Not a uniform 
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Uncertainty arithmetic

• We can do math on p-boxes

• When inputs are distributions, the answers 

conform with probability theory

• When inputs are intervals, the results agree 

with interval (worst case) analysis



Calculations

• All standard mathematical operations
– Arithmetic (+, , , , ^, min, max)

– Transformations (exp, ln, sin, tan, abs, sqrt, etc.)

– Magnitude comparisons (<, ≤, >, ≥, )

– Other operations (nonlinear ODEs, finite-element methods)

• Faster than Monte Carlo

• Guaranteed to bound the answer

• Optimal solutions often easy to compute



Probability bounds analysis

• Special case of imprecise probabilities

• Addresses many problems in risk analysis

– Input distributions unknown

– Imperfectly known correlation and dependency 

– Large measurement error, censoring

– Small sample sizes

– Model uncertainty



Better than sensitivity analysis

• Unknown distribution is hard for sensitivity 

analysis since infinite-dimensional problem

• Analysts usually fall back on a maximum 

entropy approach, which erases uncertainty 

rather than propagates it

• Bounding seems very reasonable, so long as 

it reflects all available information



Example: uncontrolled fire

F = A & B & C & D

Probability of ignition source

Probability of abundant fuel presence

Probability fire detection not timely

Probability of suppression system failure



Imperfect information

• Calculate A&B&C&D, with partial information:

– A‟s distribution is known, but not its parameters      

– B‟s parameters known, but not its shape

– C has a small empirical data set

– D is known to be a precise distribution

• Bounds assuming independence?

• Without any assumption about dependence?



A = {lognormal, mean = [.05,.06],  variance = [.0001,.001])

B = {min = 0, max = 0.05, mode = 0.03}

C = {sample data = 0.2, 0.5, 0.6, 0.7, 0.75, 0.8}

D = uniform(0, 1)
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Resulting answers
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Summary statistics
Independent

Range [0, 0.011]

Median [0, 0.00113] 

Mean [0.00006, 0.00119]  

Variance [2.9 10 9, 2.1 10 6] 

Standard deviation [0.000054, 0.0014] 

No assumptions about dependence

Range [0, 0.05]

Median [0, 0.04] 

Mean [0, 0.04]

Variance [0, 0.00052]

Standard deviation [0, 0.023] 



How to use the results

When uncertainty makes no difference
(because results are so clear), bounding gives 

confidence in the reliability of the decision

When uncertainty swamps the decision

(i) use other criteria within probability bounds, or

(ii) use results to identify inputs to study better



Justifying further empirical effort

• If incertitude is too wide for decisions, and 

bounds are best possible, more data is needed

• Strong argument for collecting more data



Advantages

• Computationally efficient

– No simulation or parallel calculations needed

• Fewer assumptions

– Not just different assumptions, fewer of them

– Distribution-free probabilistic risk analysis

• Rigorous results

– Built-in quality assurance

– Automatically verified calculation



Disadvantages

• P-boxes don‟t say what outcome is most likely

• Hard to get optimal bounds on non-tail risks

• Some technical limits (e.g., sensitive to 

repeated variables, tricky with black boxes)

• A p-box may not express the tightest possible 

bounds given all available information 

(although it often will)



Software

• UC add-in for Excel (NASA, beta 2011)

• RAMAS Risk Calc 4.0 (NIH, commercial)

• Statool (Dan Berleant, freeware)

• Constructor (Sandia and NIH, freeware)

• Pbox.r library for R

• PBDemo (freeware)

• Williamson and Downs (1990)































Diverse applications

• Superfund risk analyses

• Conservation biology extinction/reintroduction

• Occupational exposure assessment

• Food safety

• Chemostat dynamics

• Global climate change forecasts

• Safety of engineered systems 

• Engineering design
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Case study:

Spacecraft design under 

mission uncertainty



Mission

Deploy satellite carrying a large optical sensor

Sensor is 3.2 m long, 

weighs 720 kg and has an 

angular resolution of 

8.8

W

L

D

X Y

Z



Wertz and Larson (1999) Space Mission Analysis and Design (SMAD). Kluwer.
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Demonstrations

• Calculations within a single subsystem (ACS)

• Calculations within linked subsystems

Attitude 
control

Power

Solar 
array



Attitude control subsystem (ACS)

• 3 reaction wheels

• Design problem: solve for h

– Required angular momentum

– Needed to choose reaction wheels

• Mission constraints

– torbit = 1/4 orbit time

– slew = max slew angle

– tslew = min maneuver time

• Inputs from other subsystems

– I, Imax, Imin = inertial moment

– Depend on solar panel size, which 
depends on power needed, so on h

h tot torbit

slew

4 slew

tslew
2
I

tot slew dist

dist g sp m a

g

3

2 RE H
3
Imax Imin sin 2

sp Lsp
Fs

c
As 1 q cos i

m

2MD

RE H
3

a

1

2
La CdAV

2



Attitude control input variables
Symbol Unit Variable Type Value SMAD

Cd unitless Drag coefficient p-box range=[2,4]

mean=3.13

3.13

La m Aerodynamic drag torque moment p-box range=[0,3.75] 

mean=0.25

0.25

Lsp m Solar radiation torque moment p-box range=[0,3.75]

mean=[0.25]

0.25

Dr A m2 Residual dipole interval [0,1] 1

i degrees Sun incidence angle interval [0,90] 0

kg m3 Atmospheric density interval [3.96e-12, 

9.9e-11]

1.98e-11

degrees Major moment axis deviation from nadir interval [10,19] 10

q unitless Surface reflectivity interval [0.1,0.99] 0.6

Imin kg m2 Minimum moment of inertia interval [4655] 4655

Imax kg m2 Maximum moment of inertia interval [7315] 7315

m3 s-2 Earth gravity constant point 3.98e14 3.98e14

A m2 Area in the direction of flight point 3.752 3.752

RE km Earth radius point 6378.14 6378.14

H km Orbit altitude point 340 340

Fs W m-2 Average solar flux point 1367 1367

slew degrees Maximum slewing angle point 38 38

c m s-1 Light speed point 2.9979e8 2.9979e8

M A m2 Earth magnetic moment point 7.96e22 7.96e22

tslew s Minimum maneuver time point 760 760

As m2 Area reflecting solar radiation point 3.752 3.752

torbit s Quarter orbit period point 1370 1370



Coefficient of drag, Cd

Cd (unitless)

1 2 3 4 5
0

1
SMAD



Aerodynamic drag torque moment, La

La (m)
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0

1
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Required angular momentum h
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Value of information: pinching 

Initial result

After pinching 
(atmospheric density)

(kg m-3) h (N m sec)
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Three linked subsystems

Attitude 
control

Power

Solar 
array



Variables passed iteratively

• Minimum moment of inertia Imin

• Maximum moment of inertia Imax

• Total torque tot

• Total power Ptot

• Solar panel area Asa



Analysis of calculations

• Need to check that original SMAD values and all 

Monte Carlo simulations are enclosed by p-boxes

• Need to ensure iteration through links doesn‟t 

cause runaway uncertainty growth (or reduction)

• Four parallel analyses
– SMAD‟s point estimates

– Monte Carlo simulation

– P-boxes but without linkage among subsystems

– P-boxes with fully linked subsystems



Supports of results

tot (N m)
0.0 0.2 0.4 0.6 0.8 1.0

Ptot (W)
1000 1500 2000

Asa (m2)
0 10 20 30 40 50 60

Probability bounds

PBA but unlinked

Monte Carlo simulation

SMAD point estimates



Case study findings

• Different answers are consistent
• Point estimates match the SMAD results

• P-boxes span the points and the Monte Carlo intervals

• Calculations workable
• No runaway inflation (or loss) of uncertainty

• Easier than with Monte Carlo

• Practical and interesting results
• Uncertainty can affect engineering decisions

• Reducing uncertainty about (by picking a launch date) 

strongly reduces design uncertainty
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Uses for probability bounds analysis

• Uncertainty propagation

• Risk assessment

• Sensitivity analysis (for control and study)

• Reliability theory

• Engineering design

• Validation

• Decision theory

• Regulatory compliance

• Finite element modeling

• Differential equations







Differential equations



Uncertainty usually explodes

Time

x

The explosion can be traced 

to numerical instabilities



Uncertainty

• Artifactual uncertainty

– Too few polynomial terms

– Numerical instability

– Can be reduced by a better analysis

• Authentic uncertainty

– Genuine unpredictability due to input uncertainty

– Cannot be reduced by a better analysis

Only by more information, data or assumptions



Uncertainty propagation

• We want the prediction to „break down‟ if 

that‟s what should happen

• But we don‟t want artifactual uncertainty

– Numerical instabilities

– Wrapping effect

– Dependence problem

– Repeated parameters



Problem

• Nonlinear ordinary differential equation (ODE)

dx/dt = f(x, )

with uncertain and uncertain initial state x0

• Information about and x0 comes as

– Interval ranges

– Probability distributions

– Probability boxes



Model

Initial states (bounds)

Parameters (bounds)

VSPODE 
Mark Stadherr et al. (Notre Dame)

List of constants 

plus remainder

Taylor models

Interval Taylor series



Example ODE

dx1/dt = 1 x1(1 – x2)

dx2/dt = 2 x2(x1–1)

What are the states at t = 10?

x0 = (1.2, 1.1)T

1 [2.99, 3.01]

2 [0.99, 1.01]

VSPODE

– Constant step size h = 0.1, Order of Taylor model q = 5, 

– Order of interval Taylor series k = 17, QR factorization



VSPODE tells how to compute x1
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where ‟s are centered forms of the parameters; 1 = 1 3, 2 = 2 1
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Still repeated uncertainties
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Subinterval reconstitution

• Subinterval reconstitution (SIR)

– Partition the inputs into subintervals

– Apply the function to each subinterval

– Form the union of the results

• Still rigorous, but often tighter 

– The finer the partition, the tighter the union

– Many strategies for partitioning

• Apply to each cell in the Cartesian product



Discretizations
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Monte Carlo is more limited

• Monte Carlo cannot propagate incertitude

• Monte Carlo cannot produce validated results

– Though can be checked by repeating simulation

• Validated results from distributions can be obtained 

by modeling inputs with (narrow) p-boxes and 

applying probability bounds analysis

• Results converge to narrow p-boxes obtained from 

infinitely many Monte Carlo replications



Results

• Probability bounds analysis with VSPODE 
are useful for bounding solutions of 
nonlinear ODEs

• They rigorously propagate uncertainty 

about in the form of

Intervals

Distributions

P-boxes

Initial states

Parameters



Paper in AIChE Journal [American 

Institute of Chemical Engineers], 

February 2011 (on line May 2010)



PBA relaxes assumptions

• Everyone makes assumptions, but not all sets 

of assumptions are equal:

Linear Normal Independence

Montonic Unimodal Known correlation

Any function Any distribution Any dependence

• PBA doesn‟t require unwarranted assumptions



Wishful thinking

Analysts often make convenient assumptions 

that are not really justified:

1. Variables are independent of one another

2. Uniform distributions model gross incertitude

3. Distributions are stationary (unchanging) 

4. Distributions are perfectly precisely specified

5. Measurement uncertainty is negligible



You don‟t have to think wishfully

A p-box can discharge a false assumption:

1. Don‟t have to assume any dependence at all

2. An interval can be a better model of incertitude

3. P-boxes can enclose non-stationary distributions

4. Can handle imprecise specifications

5. Measurement data with plus-minus, censoring



Rigorousness

• “Automatically verified calculations”

• The computations are guaranteed to enclose 

the true results (so long as the inputs do)

• You can still be wrong, but the method

won‟t be the reason if you are



Take-home messages

• Using bounding, you don‟t have to pretend 

you know a lot to get quantitative results

• Probability bounds analysis bridges worst 

case and probabilistic analyses in a way that‟s 

faithful to both and makes it suitable for use 

in early design
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Favorite Quote from NSES 2011

“When systems fail, people notice.”

Dr. J Michael Gilmore
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• 2003 – CAIB Report (Columbia accident):
– Engineering solutions should have included a quantifiable range of 

uncertainty and risk analysis.

• 2005 – RTFTG Final Report (Columbia accident):
– Further compounding the modeling challenge is the fact that the models 

are deterministic, yielding point estimates, without incorporating any 
measure of uncertainty in the result

• 2005 – NASA CEV RFP 
– Design and execute a meaningful risk mitigation program that culminates 

in a risk reduction flight effort and PDR by the end of calendar year 2008

• 2007 – NASA-STD-7009 for Models & Simulations:
– The risk assumed by the decision maker is often misestimated due to 

inadequate assessment of uncertainties
– Reports to decision makers of M&S results shall include an estimate of 

their uncertainty and a description of any processes used to obtain this 
estimate

Recent NASA History and Context
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Quantifying
• Uncertainty Modeling

– Model uncertainty based on experimental data, simulations and/or expert opinion

• Uncertainty Propagation
– Given uncertainty models of a system’s inputs, how to propagate them through 

system models, to efficiently evaluate the corresponding system’s outputs?

Managing
• Robust Design

– Generate designs that robustly accommodate uncertainty

• Uncertainty Decomposition
– Identify uncertainties that contribute the most to performance degradation  

– Determine the parameters that should (not) be modeled as uncertain 

Increase confidence and consistency in aerospace 

vehicle safety predictions by developing improved 

methods for quantifying and managing uncertainty

Uncertainty Analysis and Robust Design
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Failure Domain Bounding via Homothetic Deformations

y(p,d)

y(p,d)=y*

p1

p2

F
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Parameter space
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- Optimization-based 
- Computationally cheap
- Analytical expressions for P[H]

y(U(u),d)=y*

u1

u2

F

S

Standard normal space

Applications

3. Hybrid Method for P[F]

2. Upper bounds to P[F]

1. Robustness metric PSM

• Monte Carlo sampling

• Homothetic deformations

y(U(u),d)=y*
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u2
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S
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Analysis: Homothetic Deformations

• Outcomes: robustness metric, worst-case uncertainty, separation, probability bounds 
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Efficiency Relative to Monte Carlo
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Failure Domain Approximation

Failure DomainSafe Domain

• Builds upon the research in 
homothetic deformations.

• Yields high fidelity 
characterizations of complex 
nonlinear failure domains.

• Utilizes theory of Bernstein 
polynomials.

• Desensitizes the analysis 
from assumptions used to 
model the uncertainty.
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• Conflicting objectives, optimally robust designs

Design: Homothetic Deformations
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The Tool Suite: UQTools

• Uncertainty Models:
– Probability density functions
– Non-probabilistic sets (hyper-rectangular and 

hyper-spherical)
• System Models: 

– Matlab-callable parameterized input/output 
maps. 

UQTools is a collection of Matlab functions 
designed to quantify the impact of uncertainty 
on generic, continuous, parameterized models. 
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UQTools Capabilities

Integration of a collection of tools (each piece designed to 
attack a specific issue in UQ). The integration represents a 
unique capability in the field.

– Efficient methods for failure set bounding
• Optimization-based approach for  computing upper bounds on failure domains

– Hybrid methods for efficient estimation of failure probabilities
• Combining failure set bounding theory with efficient conditional sampling

– First-Order Reliability Method
• Efficient failure probability approximation for low probability ‘tail’ events

– Efficient deterministic sampling
• Substantial improvement over conventional Monte Carlo

– Efficient moment propagation methods
• Useful for propagating trends, e.g., mean & variance of system response

– Probabilistic sensitivity analysis
• Analyze and rank the relative importance of system parameters

– Response surface tools 
• Radial basis functions and generalized polynomials (with 1st and 2nd derivatives)



Dynamic Systems and Control Branch 1212

Graphical User Interface

Master Parameter List

Interface

Density Function Utility

• Currently 20 different 

distributions supported. 

• General intervals and 

deterministic parameters

also supported.



Dynamic Systems and Control Branch 1313

Example Applications
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Example: GTM Control Analysis & Design

• Control structure: LQR-PI and Model Reference Adaptive 
• Uncertain parameters: aerodynamic coefficients
• Requirements: structural integrity, reliable flight envelope, 

command following, high frequency/residual oscillation

• Subscale, physical model
• High-fidelity Simulink model: non-linear aero, avionics, engine 

and sensor dynamics, atmospheric model, telemetry effects, 
time delay, filters, etc. (278 states)
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Homothetic Deformations: Analysis

- Two different controllers analyzed for robustness to aero uncertainties.
- Despite having a larger safe operating region, Controller 2 (high gain 

controller) has a nearly undetectable failure mode close to nominal point. 
- Conventional Monte Carlo is not well-suited to capture this type of failure. 
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Homothetic Deformations: Design
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Simple Aeroelastic Model

• Linear Aeroelasticity
• 4 uncertain parameters
• Bernstein polynomials
• 5 Routh-Hurwitz constraints
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Example: Flexible Antenna

• Uncertain parameters: outer radius of precision tube 

members (14 groups, with p = +/- 0.5 %) 

• Maximum allowable error, =10-5, (-100 dB)

• MIMO system (78 states, 3 inputs, 6 outputs) 

Generic Space Structure



Dynamic Systems and Control Branch 1919

{2}

{2,3}

{2,3,5}

{   }

Example: Flexible Antenna
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Efforts to Improve State of Practice

• In June 2009, LaRC formed an Uncertainty Based Methods 

Community Forum (currently 60 members – one AMES CS + one 

private sector researcher)

The objective of the UBM Community Forum is to facilitate the cross 

fertilization of methods, tools, and ideas related to statistical and probabilistic 

analysis and design for a broad spectrum of engineering applications

• Foster informal and open discussion of problems in uncertainty 

based methods

• Discuss success and/or failure

• Share current applications

• Provide a forum for new methods to be vetted
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Conclusions

• High-fidelity characterization of the failure domain

• Identification of worst-case uncertainty combinations

• Exact failure probability bounds

• Substantially desensitizes the uncertainty analysis 

from the uncertainty model assumed
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Target System

0 data points

Validation Challenge Workshop

Sandia National Laboratory Workshop

(13 international teams of experts chosen to participate)

Challenge: Adequate statistical characterization 

of uncertainty using limited experimental data. 

Accreditation System

3 data points

40 data points

(2 sets of 20)

Uncertain/Nonlinear

Subsystem
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LaRC’s Solution

Results on Target 

System 
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Overview

• Acceptance sampling/Sampling plans
• Motivation
• Components of a probabilistic requirement
• Current NASA best practice (ASA)
• A potentially more efficient practice (ASV)
• Research plan, summary results, literature review
• Operating characteristic
• Derivation of variables sampling plans
• ASV sampling plan calculators
• Empirical testing and results 
• Tests of the fundamental assumption (near normal, near 

exponential skew, and modest skew) 
• Procedure for selecting a sampling plan (flow diagram
• Summary/Contributions
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Acceptance sampling

• One of the oldest problems in quality engineering is to 
assess the acceptability of items that a customer 
receives from a producer.  

• Acceptance sampling is an alternative to 100% 
inspection applied when inspection is destructive, or 
when the time and/or cost of 100% inspection are 
unwarranted or prohibitive. 

• Based on inspection of the sample, the customer 
decides whether to accept or reject the entire lot, or to 
continue sampling. 

• There are standards (MIL, ANSI, and ISO) pertaining to 
acceptance sampling.

3



Sampling plans

• A sampling plan is the pair (n,c) or (n,k) , where n is 
the minimum sample size, i.e., the minimum number 
of observations required to verify statistically the 
requirement. 

• For discrete random variables, the constant c is the 
maximum number of nonconforming observations 
supporting the determination that a lot is acceptable.

• For continuous random variables, constant multiplier 
k is the minimum distance (in standard deviations) 
between the sample mean and the required limit 
supporting the determination that a lot is acceptable.

4



Motivation
Our interest in acceptance sampling arose in an 
analogous sampling experiment--the need to verify 
level-two design requirements for Cx “by analysis” 
using Monte Carlo simulation.  

5

[CA0049-PO] The CaLV [Cargo Launch Vehicle] shall launch LSAM 
[Lunar Surface Access Module] from the launch site to the Earth 
Rendezvous Orbit (ERO) for Lunar Sortie Crew and Lunar Outpost 
Crew missions 

The delivery of the LSAM from the launch site to the ERO shall be 
verified by analysis. The analysis shall be performed using NASA-
accredited digital flight simulations.  The analysis shall include 
Monte Carlo dispersions on mass properties, engine performance, 
GN&C parameters and environmental parameters. The verification 
shall be considered successful when the analysis results show that 
there is a [] probability with a [100(1-)%] confidence that the 
LSAM reaches ERO. 



Components of a probabilistic 
design requirement

• Condition (I)
conformance indicator (typically 
a limit on the value of an output 
variable)

• Reliability ()
minimum probability of 
achieving the condition

• Consumer's risk ()
maximum probability of 
accepting a nonconforming 
design

• Producer's risk ()
maximum probability of 
rejecting a conforming design

Consider the (true but unknown) parent 
distribution of an output variable X.

We can see that this output meets the 
condition X<1463 with reliability =0.997.

If we knew the parent distribution a 
priori, there would be no sampling error 
and the risks would be ==0.

Pass Fail
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Current NASA best practice for requirements 
verification using Monte Carlo

The current best practice employs attributes acceptance sampling (ASA).  For the required 
reliability and consumer’s risk, the sampling plan specifies number of trials (n) and the 
maximum number of failures permitted (c) to substantiate the validity of the design.

Advantage: Plans are exact and can be determined a priori. (Nonparametric--by definition, 
the distribution of the count is Binomial(n,p), where p is the true reliability.)  

Disadvantage: Plans require large samples for high confidence in highly reliable designs 
(the pass/fail count ignores “by how much” ).

Sample the parent distribution 
using Monte Carlo simulation

Sample Count

Count the number of simulation trials 
in which the output fails the condition

Fail

Pass
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A more economical 
approach to verification

The current project seeks a best practice employing variables acceptance sampling (ASV).  
For the required reliability and consumer’s risk, the sampling plan specifies number of 
trials (n) and the minimum multiplier (k) to substantiate the validity of the design.

Advantage: ASV plans typically require fewer trials than ASA plans (but not always).

Disadvantages: Software for plan generation is unavailable; procedures/assumptions 
reported in the academic literature appear to be largely untested. 

Sample

)(nX

)(~ nk X
maxX

Pass Fail
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Research plan and summary results

9

Software search Off-the-shelf plan calculators (commercial or otherwise) were 
found only for normal variates.

Literature search Plans for 5 additional variates were found in the academic 
literature (Exponential, Gamma, Weibull, Inverse Gaussian, 
Poisson, Burr).

Implementation Calculators were implemented in Excel for Binomial, Normal, 
Exponential, Gamma, Weibull, Inverse Gaussian, and Poisson.  
(Burr not attempted. )  Verified against published examples.  Plans 
typically, but not invariably, smaller than corresponding ASA 
plans.

Empirical Testing Monte Carlo simulation applied to test plans derived for typical 
(Constellation-like) OC from all seven calculators.  All were 
validated, except for Inverse Gaussian.  Error in the published IG 
derivation discovered.

Application issues Fundamental assumption that the distributional form can be 
determined uniquely from sample data tested using Monte Carlo.  
Assumption not substantiated for typical OC.  Conservative 
protocol developed for selecting plans to use in practice. 



Literature 
Variable Source Implemented Validated

Binomial Multiple sources  

Normal Multiple sources  

Gamma K. Takagi (1972) “On designing unknown-sigma sampling 
plans on a wide class of non-normal distributions,” 
Technometrics 14(3)669-678.

 

Weibull K. Takagi (1972) “On designing unknown-sigma sampling 
plans on a wide class of non-normal distributions,” 
Technometrics 14(3)669-678.

 

Exponential W. C. Guenther (1977), Sampling Inspection in Statistical 
Quality Control, Macmillan, New York.

 

Poisson W. C. Guenther (1977), Sampling Inspection in Statistical 
Quality Control, Macmillan, New York.

 

Inverse
Gaussian

M. S. Aminzadeh (1996), "Inverse-Gaussian Acceptance 
Sampling Plans by Variables," Communications is Statistics--
Theory and Methods 25(5)923-935.

 

Burr K. Takagi (1972) “On designing unknown-sigma sampling 
plans on a wide class of non-normal distributions,” 
Technometrics 14(3)669-678.

No No
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

p0 p1

Operating Characteristic

Every sampling plan has an operating characteristic (OC) 
which defines the probability of accepting a population 
Pa(p) for every value of the failure probability p[0,1].   

11

A sampling plan is derived by
defining two operating points, 
(p0,1-) and (p1,), where p0< p1

and  and  are small probabilities.  

OC curve.



Derivation of variables plans

• The underlying problem can be framed as an 
hypothesis test for which we intend to enforce 
both significance and power requirements.  

• The null and alternate hypotheses are

H0: p = p0 and H1: p = p1 > p0

• Under H0 we accept the population as conforming 
and under H1 we reject the population as 
nonconforming.  

• The inequalities

Pa(p0) > 1- and Pa(p1) < b

establish the significance and power of the test.

12



F(x;0)

F(x;1)

01xmin

p1

p0

Derivation of variables plans

With the form of the 
distribution F(x; )
known, the null and 
alternate hypotheses 
are equivalent to

H0:  = 0

H1:  = 1 > 0

as shown for a required 
lower bound xmin.
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xmin A11



0

1-

A0

k1

k0

Derivation of variables plans

The power requirements 
are applied to the 
sampling distribution 

to determine the 
acceptance limit A, 
required sample size n,
and multiplier k.

14

),;ˆ( nF 



Dashboard for the Weibull Calculator
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Empirical test results (example)
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Consider an upper limit of xmax=10,000 for a random variable X
distributed Weibull with unknown shift parameter  and estimated 
shape and scale parameters.  For the test OC (p0,)=(0.005,0.2), 
(p1,)=(0.001,0.1), the associated the null and alternative means 
are 0 =7841.64 and 1 =8121.07, respectively. The variables plan 
from the gamma calculator is (n,k)=(156, 2.17779). 
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Empirical test example results
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Sampling distribution of 
the mean estimated using 
100,000 Monte Carlo 
trials.

Scatter diagram for 
estimated  and .  
Line is the 
acceptance limit

A=-k

nonconforming

conforming



Empirical test summary results
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Variable n k   nv/na

Exponential() 2 2.43x10-3 0.200 0.082 0.003

Normal(,=100) 18 2.886 0.191 0.097 0.023

Normal(, ) 88 2.886 0.191 0.097 0.099

Gamma( 10,338 ,) 206 2.131 0.193 0.096 0.224

Weibull( 10,1995 ,) 91 3.623 0.189 0.079 0.117

IG( 1502, 100000,) 18 2.886 0.173 0.382 unusable

 and  estimated using 100K Monte Carlo trials for 
plans with (p0,)=(0.005,0.2), (p1,)=(0.001,0.1)

Results for xmin=1000 



Empirical test results
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Variable n k   nv/na

Exponential() 66 6.26922 0.200 0.082 0.085

Gamma( 10,441 ,) 77 3.667 0.189 0.104 0.099

Weibull( 10,3800 ,) 156 3.623 0.188 0.081 0.201

Variable n c   nv/na

Binomial(n,p) 777 1 0.188 0.100 1

Poisson(n,p) 21 88 0.191 0.097 0.035

Results for xmax=10,000 

Results for discrete 



ASV fundamental assumption
The fundamental assumption of ASV is that the form of the 
output distribution is known a priori.  (Moreover, validity 
testing showed that ASV procedures are robust to error in 
the shift and scale parameters, but not to shape 
parameters. )

20

• In general, the assumption is unsubstantiated and the form of 
the distribution must be determined by fitting sample data.

• The question naturally arises, “How many trials are required in 
order to fit the correct form of the parent distribution?”

• Specifically, “Can we obtain a unique fit to the correct parent 
distribution based on a sample which is approximately the 
same size as that specified in the corresponding ASV plan?”

• The literature appears to be essentially silent on this issue. 
For an exception, see C. Liu (1997) A Comparison Between the Weibull and 

Lognormal Models Used to Analyse Reliability Data, Ph.D. Dissertation,  University 
of Nottingham, UK



Test case 1—Near Normal

Three parent 
output 

distributions 
where chosen 

with similar 
shapes and 

identical 
means and 

standard 
deviations.  
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Fitting tests were performed for a requirement with 
condition: limit (upper or lower)
reliability: =0.9973 
consumer’s risk: =0.1

(This seems typical of what we had been seeing as Cx level 2 requirements.)



Test 1 procedure and results
• 30 samples of 100 trials each were drawn from the 

parent Normal distribution.
• Normal, Gamma, Weibull, and Exponential 

distributions were fit to sample using commercial 
software (@RISK).

• In general, good fits to the Normal data were 
achieved with a Normal  distribution.

• But good fits also were achieved with Weibull and 
often Gamma (but not Exponential).

• Fits were compared using three alternative 
goodness-of-fit (GOF) tests--the “best fit” was 
sensitive to the GOF test used.  (Note: Anderson-
Darling is the preferred test here because it  gives 
more weight to the tails.)

Conclusion: For our 
example, the size of the 
sampling plan is inadequate 
to distinguish the parent 
distribution for data sets 
with near-normal shape.

• The test procedure was repeated for samples of 300 
trials each, with no appreciable change in the nature 
of the results.

• The test procedure was repeated for samples of 100 
and 300 drawn from the Gamma and Weibull parent 
distributions, with no appreciable change in the 
nature of the results.



Useful result • The test results were not unexpected—these 
distributions are very similar in shape overall.  

• Our interest is in the (small) differences in the 
tails of these of these distributions.

• Note that the distribution with the smallest k
factor provides the greatest protection against 
accepting a nonconforming design (i.e., the 
largest lower limit and the smallest upper limit).

23

Parent Lower Upper

Normal 922 1478

Gamma 957 1513

Weibull 943 1463

Acceptance limits for 
=0.9973 for the three 
parent distributions.



Application

Variable n c k A

Binomial (ASA plan) 2959 4

Normal(1200, 0) 257 2.968 1497

Gamma(41.1, 15.5984, 558.906) 224 3.378 1538

Weibull(3.68187, 366.6, 869.25) 296 2.787 1479

Upper limit sampling plans (=0.2)

24

Lower limit sampling plans (=0.2)

Variable n c k A

Binomial (ASA plan) 2959 4

Normal(1200, 0) 257 2.968 903

Gamma(41.1, 15.5984, 558.906) 353 2.566 943

Weibull(3.68187, 366.6, 869.25) 615 2.677 932

The plan with the 
tightest bound will 
yield the most 
conservative 
decision—one that 
guarantees the 
consumer’s risk is no 
greater than specified. 

For the example 
requirement, the 
Weibull plan provides 
the tightest (least) 
upper bound.

The Gamma plan 
provides the tightest 
(greatest) lower 
bound.

These  plans provide an order-of-magnitude reduction in computing effort.



Test case 2—Right skew

The second 
case considers 

Weibull and 
Gamma  

distributions 
with identical 

means and 
moderate 

skew.
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Fitting tests were performed for the same requirement 
condition: limit (upper or lower)
reliability: =0.9973 
consumer’s risk: =0.1



Test 2 procedure and results
• 30 samples of 300 trials each were 

drawn from the parent Weibull 
distribution.

• Normal, Gamma, Weibull, and 
Exponential distributions were fit to 
sample using commercial software.

• In general, good fits to the Weibull data 
were achieved with the Weibull 
distribution and sometimes the Gamma 
distribution.

• The skew is sufficiently large that the 
data are not mistaken as Normal.

• The skew is sufficiently small that the 
data are not mistaken as Exponential.

• The test procedure was repeated for a 
the parent Gamma distribution, with 
no appreciable change in the nature of 
the results.

Conclusion: For our example, the size of the sampling plan is inadequate to 
distinguish between Weibull and Gamma, but adequate to rule out Normal and 
Exponential parents.



Useful result 2
• As before, the test results were not unexpected 

and our interest is in the (small) differences in the 
tails of these of these distributions.

• As before, the distribution with the fattest tail in 
the direction of the limit provides the greatest 
protection against accepting a nonconforming 
design.

• However, with sufficient skew as in this example, 
we can rule out Normal as the parent (poor fit).

Parent Lower Upper

Normal 922 1478

Gamma 1023 1806

Weibull 1017 1531

Acceptance limits for 
=0.9973 for the three 
parent distributions.



Application

Variable n c k A

Binomial (ASA plan) 2959 4

Normal(1200, 0) 257 2.968 1497

Gamma(1.77,15.5984,1017.7) 278 4.915 1873

Weibull(2.04,220,1005.9) 264 3.557 1557

Upper limit sampling plans (=0.2)
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Lower limit sampling plans (=0.2)

Variable n c k A

Binomial (ASA plan) 2959 4

Normal(1200, 0) 257 2.968 903

Gamma(1.77.15.5984,1017.7) 25009 1.304 1018

Weibull(2.04,220,1005.6) 3651 1.855 1015

Once again, the plan 
with the tightest 
bound will yield a 
conservative decision.

The Weibull plan 
provides the tightest 
(least) upper bound 
and can be used in 
this case.

The Gamma plan 
provides the tightest 
(greatest) upper 
bound, but is very 
large.  Obviously, the 
ASA plan is preferable  
in this case.  

The UL plan provides an order-of-magnitude reduction in computing effort.



Test case 3—Near Exponential LL

• A typical application is lifetime data, where the random 
variable X represents the time at which a component fails 
and the condition is the lower limit L=Xmin.

• Note that Expo(), Gamma(1,), and Weibull(1,) are the 
same distribution.
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Plan comparisons
• The Exponential plan is very small—more than three orders of 

magnitude smaller than the attributes plan.  
• The Gamma and Weibull plans are identical and very large—almost three 

orders of magnitude larger than the attributes plan.
This remarkable difference in n flows from the fact that Exponential has a 
single parameter and fixed shape–if we know a prior the parent is 
exponential, then we need only estimate the mean.

• The Gamma and Weibull plans are the same, both derived from the 
same approximation.  These are more conservative than the exponential 
(the true value of A=270.37), but unusable in this application because of 
their size.

Variable n c k A

Binomial (ASA plan) 6580 12

Exponential(100000) 13 0.9806 1940.00

Gamma(1, 100000) 3819299 0.9979 2060.45

Weibull(1,100000) 3819299 0.9979 2060.45

Lower limit sampling plans (=0.02)
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Test case 3—modest skew
• 30 samples of 13 trials each were 

drawn from the parent Exponential 
distribution

• Gamma, Weibull, and Exponential 
distributions were fit to these 
datasets (shifts set to zero for 
lifetime data).

• Fits were compared using three 
alternative goodness-of-fit tests.  

• Best fits were dependent GOF test 
and there were  many ties for best 
fit.

• Acceptable fits to exponential (p-
value>0.15) where obtained in most 
cases (30 Chi-squared, 25 K-S, 23 A-
D).

• Exponential or binomial are the only 
practical plans in this case and 
acceptable Exponential fits most 
often can be achieved for 
Exponential parent distributions.
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Effect of skew

The Exponential plans are conservative for Wiebull parents with 
skew >2 and non-conservative for skew < 2.  Accepting the 
Exponential fit in the second case will result in a modesty lower 
reliability than specified (0.995 rather than 0.997 in this example).

But what about datasets from Weibull and Gamma 
parents masquerading as Exponential?
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Can modest skew be detected?

• 30 samples of 13 trials each were drawn from the parent 
Weibull distribution with skew=0.631

• Gamma, Weibull, and Exponential distributions were fit to 
these datasets (shifts set to zero for lifetime data).

• A-D and K-S tests typically showed very poor fits to 
Exponential even with these small samples (Chi-squared 
test appears to lack power).

• P-P and Q-Q plots illustrated that the Exponential fits 
were poorest in the region of interest .

33

Conclusion: With a small sample and skew  2 it is not 
possible to discern the parent distribution; with lesser skew 
Weibull and Gamma will not be confused with Exponential.
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Procedure for 
determining 

a sampling 
plan



Procedure (lower limit plans)
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Procedure (upper limit plans)
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Summary
• ASA plans are preferred when computational demands can be met. 

These plans are exact and transparent.
• ASV plans are a viable alternative, when ASA plans are too large. 

These plans are inherently approximate; the data (perhaps 
transformed) must fit the a distribution for which ASA calculator is 
available.  The assistance of a statistician would be beneficial.

• For data with skew less than Exponential, the Normal, Gamma, or 
Weibull plan with the tightest bound is a good choice—it is 
conservative and can provide an order of magnitude reduction in 
computational effort.

• For near-Exponential data with a lower limit, the Exponential plan is 
not necessarily conservative (and should be applied intelligently and 
with caution)—but can provide several orders of magnitude reduction 
in computational effort.  

• In some applications, uncertainties in the protection afforded by 
Exponential may be inconsequential when model error is considered.

• When applying the Exponential, a good practice is to make as many 
trials as feasible and then attempt a fit to the distributions currently 
supported.
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Contributions
Variables acceptance can reduce sample sizes and the 
reduction can be as much as one, two, and even three orders of 
magnitude depending on the distribution and OC.  But this isn't 
always the case.  Gamma and Weibull plans become larger than 
attributes plans as the shape parameter decreases.  

Normal plans don't work well for inverse Gaussian.  But the 
published inverse Gaussian plans don't work either. We've 
found the error in the derivation and I think I may have a fix 
given the time to mess with it.  That's news.

The purpose of variables acceptance is to reduce sample size. 
But in accomplishing this we can't be sure that we satisfy the 
fundamental assumption that the distribution is known, at least 
for the OC we are interested in. Assuming we want to be 
conservative with respect to consumer's risk, we've developed 
a procedure to overcome this issue.  
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Statistical Intervals

• Decisions are frequently made based on limited sample data
– Examples: Strength of a material must be at least X 

Minimum strength of a material must exceed max load applied
Determine minimum strength of a material over several environments

• Sample data can be used to estimate mean strength or probability 
of exceeding limits, but provides no information about the precision 
of the estimates
– There may be big differences between the estimated values and what 

the true values are, if unlimited data were available
• Statistical intervals quantify the uncertainty associated with an 

estimate
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Types of Statistical Intervals

• Appropriate type statistical interval depends on the application
– Confidence and Tolerance Intervals are for describing the population or process 

from which the sample data has been selected
– Prediction Intervals are for predicting the results of a future sample

• Confidence intervals: enclose means, variances and other population 
parameters 

• Tolerance intervals are used to contain a specified proportion of a 
population
– Lower tolerance bound for bounding the population from below (minimum 

strength)
– Upper tolerance bound for bounding the population from above (maximum load)
– Tolerance interval for enclosing the population both above and below

• Example: If T is an upper tolerance bound with 90% confidence for .99 of 
the population, then we are 90% confident that 99% of the population is 
less than T
– T is denoted as a (.99, .90), where 99 represents the proportion of the population 

bounded and 90 represents the confidence level 
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1-Percentile of Normal Distribution
• Assume the population is normal

– Mean (µ = 200) and variance (σ2 = 400)
• Then the 1-percentile =

• When the mean and variance are both unknown, we must sample from this 
distribution to estimate the 1-percentile  

5.153326.2 =− σµ

True 1-percentile
99% of the population is 
greater than the 1-percentile
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Sample of 10 Measurements Used to Estimate 1-Percentile

• Use sample mean,    , in place of µ and sample variance, s2, in place of σ2

• Estimated 1-percentile =    

Estimated 1-percentile
Estimated distribution 

from sample

Sampled 
data points

x
sx 326.2−
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Another Sample of 10 Measurements Used to Estimate 1-Percentile

• Use sample mean,    , in place of µ and sample variance, s2, in place of σ2

• Estimated 1-percentile =  sx 326.2−
x

Estimated 1-percentile
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• Use sample mean,    , in place of µ and sample variance, s2, in place of σ2

• Estimated 1-percentile = 

• A (.99,.90) lower tolerance bound is of the form: 
– k is selected so that 90% of the samples will produce a bound that encloses 99 percent of the 

population (k = 3.532 for sample size of 10)
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100 Samples of 10 Measurements Used to Estimate 99-percentile

100 estimates of 1-percentile

55% of estimates 
are too large

ksx −

sx 326.2−
x
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• Use sample mean,    , in place of µ and sample variance, s2, in place of σ2

• (.99,.90) Lower tolerance bound = 

• Increasing sample size will decrease spread of tolerance bounds
• Increasing confidence level will decrease percent of time tolerance bound is too large 

(.01,.90) Lower Tolerance Bounds: 100 Samples of 10 Measurements

x

100 tolerance bounds

10% of bounds 
are too large

sx 532.3−
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Tolerance Bounds for Normal Distribution

• X1, X2, …, Xn sample from normal population, N(μ,σ2), with 
unknown μ and σ2

– Let zp be the p quantile of standard normal distribution
– p quantile of N(μ,σ2) is qp = μ + zp σ

• The 1-α upper confidence bound for qp is a (p,1- α) one-sided upper 
tolerance bound for N(μ,σ2)
– Find k such that 

– Or                                              (Non-central t distribution)

– k = 

• The (p,1- α) upper tolerance bound is

• The (p,1- α) lower tolerance bound is  
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Splus Code for Normal Tolerance Bound

# Computes (p,1-alpha) upper tolerance bound on X ~ Normal
# 
# Inputs: xdata (vector of sample data), p = percentile, alpha = 1 - confidence level

library(envstats) # library for non-central t

UpperToleranceBound <- function(p,alpha,xdata){
n <- length(xdata)
Ssq <- var(xdata)
UTB <- mean(xdata) + qt(1-alpha, n-1, ncp = qnorm(p)*sqrt(n))*sqrt(Ssq/n)
UTB

}

# Example
> xdata <- c(1.822938, 1.143871, 0.972309, -0.078231, 0.480773, 0.710025, -0.573717, 
0.272126, 0.016359, -0.596675)
> UpperToleranceBound(.99,.10,xdata)
[1] 3.1371
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Orbiter Heat Shield Main Engine Ignition Acoustic Environment

• After post flight analysis, 16 
flights remaining with data 
judged suitable for use in 
updating base heat shield 
environment limits

• MIL-STD- 1540E and NASA 
STD –HDBK-7005 approach for 
this limit:

• (.99,.90) upper tolerance 
bound used for qualification 
testing 

• (.95,.50) upper tolerance 
bound used for acceptance 
test

Upper Tolerance Bound Example

• STS acoustic vibration dataset:
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Orbiter Heat Shield Main Engine Ignition Acoustic Environment

• Assume independence 
between frequency bands

• Probability plots show data can 
be reasonably modeled by 
normal distribution

• Normal upper tolerance 
bounds:
– (.99,.90): 
– (.95,.50): 

Upper Tolerance Bound Example (2) 

• Results
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(.99,.90) Upper 
Tolerance Bound

(.95,.50) Upper 
Tolerance Bound
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CEV Parachute Assembly System (CPAS) Reliability 

• To calculate the reliability for the main and drogue parachute components, both the 
strength and load distributions are characterized by independent normal distributions

• Reliability, R, is the probability that the strength, X, is greater then the load, Y, i.e. 
P(X-Y > 0)
– Distribution of X-Y is normal with mean µX - µY , and variance   

– R =                          , where     is the cumulative normal distribution 

– Since the means and variances are unknown, we can only estimate the reliability 
so we also need a lower confidence bound on R

• If we select a quantile, p, such that the (p,1-α) lower tolerance bound = 0, then p is a 
100(1- α )% lower confidence bound on R

Load-Strength Reliability Problem
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Lower Tolerance Bounds for X-Y

• X1, X2, … Xn1
sample from normal population, N(μX,σX

2),
• Y1, Y2, … Yn2

sample from normal population, N(μY,σY
2),

• 1-p quantile is:                                                  
• The (p,1-α) lower tolerance bound is:

– Exact solution if ratio of variances is known (Hall):

– Approximate solution for unknown and arbitrary variances (Guo-Krishnamoorthy):
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• Approximate (p,.90) Lower 
Tolerance bounds 

• 90% confident that 
P(strength > load) > .9656

CEV Parachute Assembly System (CPAS) Reliability 

• Simulated data: 20 strength, 7 load measurements:

Load-Strength Reliability Problem (2) 

p (p,.90) LTB
.99 -1.25

.98 -0.57

.97 -0.14

.9656 0.00

.96 0.17

Strength 16.1 17.4 14.6 12.8 14.0 15.0 14.3 12.9 15.7 14.4 15.6 13.3 13.8 13.9 12.2 12.4 12.8 14.4 15.1
Load 9.3 9.2 6.3 9.6 9.0 9.6 10.7
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Splus Code for Lower Tolerance Bound on X-Y
Ratio of Variances Known

# Computes (p,1-alpha) lower tolerance bound on X-Y for known ratio of variances
# inputs: xdata, ydata both vectors, p = percentile, alpha = 1 - confidence level, q1 = (sigma1/sigma2)^2

library(envstats) # library for non-central t

Tolerance2distsKnownRatio <- function(p,alpha,q1,xdata,ydata)
{

n1 <- length(xdata)
n2 <- length(ydata)
Sdsq <- (1+1/q1)*((n1-1)*var(xdata)+(n2-1)*q1*var(ydata))/(n1+n2-2)
v1 <- n1*(1+q1)/(q1+n1/n2)
LTB <- mean(xdata)-mean(ydata)-qt(1-alpha,n1+n2-2, ncp = qnorm(p)*sqrt(v1))*sqrt(Sdsq/v1)
LTB

}
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Splus Code for Lower Tolerance Bound on X-Y
Unknown Arbitrary Variances

# Computes (p,1-alpha) lower tolerance bound on X-Y for unknown variances
# inputs: xdata, ydata both vectors, p = percentile, alpha = 1 - confidence level

library(envstats) # library for non-central t

Tolerance2distsUnknownRatio <- function(p,alpha,xdata,ydata)
{

n1 <- length(xdata)
n2 <- length(ydata)
S1sq <- var(xdata)
S2sq <- var(ydata)
q1 <- S1sq*(n2-3)/S2sq/(n2-1)
q2 <- S2sq*(n1-3)/S1sq/(n1-1)
v1 <- n1*(1+q1)/(q1+n1/n2)
v2 <- n2*(1+q2)/(q2+n2/n1)
f1 <- (n1-1)*(q1+1)^2/(q1^2+(n1-1)/(n2-1))
f2 <- (n2-1)*(q2+1)^2/(q2^2+(n2-1)/(n1-1))
LTB1 <- mean(xdata)-mean(ydata)-qt(1-alpha,f1, ncp = qnorm(p)*sqrt(v1))*sqrt((S1sq+S2sq)/v1)
LTB2 <- mean(xdata)-mean(ydata)-qt(1-alpha,f2, ncp = qnorm(p)*sqrt(v2))*sqrt((S1sq+S2sq)/v2)
LTB <- min(LTB1,LTB2)

}
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Structural Allowable for Silica Cloth Phenolic

• Silica Cloth Phenolic (SCP) is used as part of the RSRM and RSRM-V 
nozzles (TPS for flex bearing)

• Allowable stress ( working stress or design allowable) for a material is the 
maximum stress at which one can be reasonably certain that failure will not 
occur

• Two one-sided tolerance limits are used 
– A-basis: (.99,.95) lower tolerance bound on material strength
– B-basis: (.90,.95) lower tolerance bound on material strength

• Strength of composite materials may have several sources of variation
– Lot, Rolls, Panel
– Temperature
– Within panel variation
– Other sources

• Data with multiple sources of variability should be tested to 
determine if data is structured

Structured Data Example

Panels

1Lots

Rolls

1

1 32

2 3 4 5 6
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Structural Allowable for Silica Cloth Phenolic

• Silica Cloth Phenolic Panel Across-Ply Tensile Strength Data

• Objective: Determine lower tolerance bound at each temperature

Structured Data Example (2) 
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Silica Cloth Phenolic Panel Across-Ply Tensile Strength Data
Single Test Temperature

Anderson-Darling k-sample test proves the data is structured 

Data from same lots are circled

Lots with data 
from multiple rolls

Structural Allowable for Silica Cloth Phenolic
Structured Data Example (3) 
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Lot ID Roll ID Samples

3 3 5

4 4 6

5 5 6

6 6 3

7 7 3

8 8 3

9 9 5

10 10 5

11 11 3

12 12 10

13 13 3

14

14 3

15 3

16 6

17 3

15

18 3

19 3

20 3

21 3

22 3

16
23 3

24 3

17 25 3

18 26 3

• Randomly draw 16 lot means from 
N(µ,σlot)

• Randomly draw 24 roll means 
from N(0, σroll|lot)

• Randomly draw 94 residual values 
from N(0, σe)

• Combine random data into lot, roll, 
sample data structure 

Estimating Data with 70 F Data Structure
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Structural Allowable for Silica Cloth Phenolic 

• (.99,.95) normal tolerance bounds applied to structured data
– Using the estimated structure as in the SCP Tensile Strength data, 100 

samples of size 94 are drawn and the tolerance bound is calculated
– Simulated data includes variability between lot, within lots, within 

roll/panel 

• Normal tolerance bound is an overestimate approximately 35% of 
the time, not effective for structured data

Structured Data Example (4) 
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Mixed Effects Model For Silica Cloth Phenolic
Structured Data Example (5) 

• Strength(T) = β0 + β1T+ L + R + εk        [   Normal(β0 + β1T,                         )  ]
– T = temperature of SCP
– β0, β1 = slope and intercept parameters
– L = random lot effects, Normal( 0, σlot )
– R = random roll effect within a lot, Normal( 0, σroll|lot )
– εk = Normal( 0, σe )
– Panel-to-panel variability ignored (only lot 14 roll 16 has more than 1 panel)

• 1-Percentile of strength = β0 + β1T - 2.326

• (.99,.95) lower tolerance bound is a 95% lower confidence bound on 1-
percentile

– Methods for computing tolerance bounds for this type of structured data are 
currently not available (unbalanced data with more than two variance terms)

– Methods exist for unbalanced data with two variance terms and balanced data 
with more than two variance terms

22
|

2
elotrolllot σσσ ++

22
|

2
elotrolllot σσσ ++
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Structural Allowable for Silica Cloth Phenolic
Structured Data Example (6)

• Silica Cloth Phenolic Panel Across-Ply Tensile Strength Data at 70 C
– Model as a mixed model with one random effect and unbalanced data

• Temperature is fixed effect
• Combine lot and roll effect into single effect 
• Strength(T) = β0 + β1T+ L + εk       [   Normal(β0 + β1T,                  )  ]

• Approximate methods exist for this case
– RECIPE ANOVA model used to compute (.99,.95) lower tolerance bound

• http://www.itl.nist.gov/div898/software/recipe/
– Splus  code (based on Krishnamoorthy & Mathew )
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Splus Code for Balanced Mixed Effects Models
# Computes Lower Tolerance Bounds for a Balanced Nested Design
# 1 Fixed Factor (Temperature) and 1 Random Factor (lot)
# Temperature has a levels and lot has b levels and n is the number of replicates
# Observed data is an array Y(i,j,el), i=1,2,...a, j=1,2,...,b, el=1,2,...,n
# p = the percentile of the tolerance bound
# alpha = 1 - confidence level of the tolerance bound

LTBmixedUnbalanced <- function(p,alpha,Y){
a <- dim(Y)[1]
b <- dim(Y)[2]
n <- dim(Y)[3]
f1 <- a*(b-1)
f2 <- a*b*(n-1)
d1 <- 1/(n*b)
d2 <- (b-1)/(n*b)
c1 <- 1/n
c2 <- 1 - 1/n
LTB <- rep(0,a)
for (temp in 1:a){

theta_hat <- sum(Y[temp,,])/(b*n)  # Step 1
ss1 <- 0
for (i in 1:a){

for(j in 1:b){
ss1 <- ss1 + ( sum(Y[i,j,])/n - sum(Y[i,,])/(b*n) )^2

}
}
ss2 <- 0
for (i in 1:a){

for(j in 1:b){
for (el in 1:n){

ss2 <- ss2 + ( Y[i,j,el] - sum(Y[i,j,])/n )^2
}

}
}
k <- 100000  # Step 2
Z <- rnorm(k)  # Step 3
U1 <- rchisq(k,f1)
U2 <- rchisq(k,f2)
G1 <- ss1/U1  # Step 4
G2 <- ss2/U2
Gtheta <- theta_hat - Z*sqrt(d1*G1 + d2*G2)
G8 <- Gtheta - qnorm(p)*sqrt(c1*G1 + c2*G2)  # Step 5
LTB[temp] <- quantile(G8,alpha)

}
LTB

}
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Summary

• Tolerance bounds are commonly used to verify requirements on 
space systems
– Determines limits of acceptability
– Can also be used to determine required sample sizes 
– Includes uncertainty due to small sample sizes

• Computing tolerance bounds
– First check distribution of data

• There are tolerance bounds for other types of distributions
– Check for structured data
– Apply correct method

• Research area: Tolerance bounds for general mixed effects or 
random effects models with unbalanced data
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Call for Papers
• Special Issue on “Statistical Engineering” in Quality 

Engineering

• The objective of the issue is to invite contributions from 
the community of researchers, practitioners and 
academicians to provide examples, insight and research 
in the following areas:
– Case studies demonstrating the development, process and 

results of the successful implementation of Statistical 
Engineering in a broad spectrum of different applications, 
including but not restricted to industry, manufacturing, service, 
financial, and healthcare

– Implementation strategies to incorporate Statistical Engineering 
into the graduate and undergraduate Statistics program curricula

• Consider submitting a paper
– Handouts provided at this symposium on the how, when, where, 

what, and who!



Purpose

• First issue: 1988
• Currently in Volume 23 (published quarterly)
• Directed to practitioners and researchers.
• Devoted to publication of original quality 

engineering solutions.
• Publish: 

– new methods ready for immediate application
– novel uses of standard methods



Original Intentions…

Quality Engineering is a magazine devoted to articles 

which tells persons dealing with Quality problems how 

others have addressed similar situations and what was 

done.  The message should be “What the problem was, 

how we solved it, and what the results were.” 

• Articles geared towards manufacturing-related issues.
• Journal was an outgrowth of the quality problems 

industry faced in the 1980s; collaboration between 
Marcel Dekker, Inc. and ASQC.



First Issue of QE
• “Do we need new machines? A p-chart and regression 

study” Gerald B. Heyes

• “New product introduction and quality program 
management” James T. Zurn

• “An application of fractional factorial experimental 
designs” Mary B. Kilgo

• “Management, measurement, and analysis of the supplier 
base” Glenn Roth

• “An approach for development of specifications for quality 
improvement” Kailash C. Kapur

• “New directions for reliability” James R. King 

• “Nondestructive crimp verification” James R. Simmonds

• Variable gauge repeatability and reproducibility study 
using the analysis of variance method” Pingfang Tsai



Editors

• Frank Caplan, Founding Editor
– Served for 17 years

• David Lyth
• James Simpson
• Geoff Vining
• Connie Borror
• Peter Parker (beginning January 2013)



QE Sections

• Original Articles
• Quality Quandries

• Statistical Standards 

• Technical Advice (new)

• Reliability Section (new)

– We need more articles here

– The Reliability Division of ASQ gives a $1000 

award for the best reliability paper in QE each 

year.



1988-2005

Booker, B. and Lyth, D. (2006). Editorial: “Quality Engineering from 1988 through 
2005; Lessons from the Past and Trends for the Future”. Quality Engineering pp. 1-4.



1988-2005

Booker, B. and Lyth, D. (2006). Editorial: “Quality Engineering from 1988 through 
2005; Lessons from the Past and Trends for the Future”. Quality Engineering pp. 1-4.



Topics

Number of Articles 44 35 17 11 10 8 5 5

Percent 32.6 25.9 12.6 8.1 7.4 5.9 3.7 3.7

Cum % 32.6 58.5 71.1 79.3 86.7 92.6 96.3 100.0
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Articles

• Original research
• Novel applications
• Tutorials
• Review papers
• Discussion papers
• Historical
• “Conversation series”



What do we need?
• Collaboration among different fields and 

expertise
In academia:
• When times are good: (these are turtles):

Engineering Math/statistics Business Chemistry/Biology
….

We’re happy collaborators

http://freeturtle.net/freeturtle



What do we need?
• Collaboration among different fields and 

expertise is necessary
In academia:
• When times are bad, we have to be 

careful: (these are turtles also):

Engineering Math/statistics Business Chemistry/Biology
….

We “turtle up” http://freeturtle.net/freeturtle



Collaboration
• Best methods + Software = Useful + Used

Maciejewski, Rudolph, Hafen, 
Abusalah, Yakout, Ouzzani, 
Cleveland, Grannis, and Ebert, 
(2010). “Visual Analytics Approach 
to Understanding Spatiotemporal 
Hotspots”. IEEE Transactions on 

Visualization and Computer 

Graphics



Collaboration
• Best methods + Software = Useful + Used

Maciejewski, Rudolph, Hafen, Larew, 
Mitchell, Cleveland, and Ebert, (2010). 
“Forecasting Hotspots – A Predictive 
Analytics Approach”. IEEE 

Transactions on Visualization and 

Computer Graphics



What do we want in QE?
• Every so often, we need 

– Bibliographies 
– Basic review articles

• Immediate need (want?)
– Basic review of reliability techniques and methods
– Providing references for “where to start”

• Software reviews/guidance
• What’s it called in that field?

– Key to guiding students as well as practitioners
– Requires collaboration among experts in these various fields



Quality Engineering
• Fills a much needed niche

• Outlet for innovative collaborations

• By its original intent, QE embodies “statistical 

engineering”

• Teaching tool



Quality Engineering

• No matter what the application or field of 
interest, QE articles demonstrate: 

“What the problem was, how we solved it, and 

what the results were.”

• I would like to dedicate this presentation in 
memory of a beloved leader in this field and 
unfailing supporter of QE, Dr. Soren Bisgaard.



Experience with Designed 
Experiments in Aerospace Ground p p

Test:
Successes and ChallengesSuccesses and Challenges

Dr. Drew Landman

Professor

Department of Mechanical and Aerospace Engineering

Old Dominion University



Introduction
• The history of the use of DOE in aerospace ground testing 

appears to be rather short
– Examples

• NASA LaRC began use in the late 90’s

• USAF AEDC only recently began training in DOE

• Personal experience
– Began in summer 2001 by setting up wind tunnel experiments for DOE 

classworkclasswork

– Experience now with DOE use in aerodynamic testing of aircraft, 
automobiles, trucks as well as instrument calib.

C tl t hi DOE/RSM t d t l l t ODU t d t d– Currently teaching DOE/RSM at graduate level to ODU students and 
conducting industry/gov. training

– This talk will highlight some of the author’s experiences
ith DOE b d blwith DOE based problems



Internal Balance Calibration
• Force and moment measurements are fundamental to wind 

tunnel testing (two LFST examples below)
R l h i d i i i• Recently more emphasis on determining uncertainty

• Calibration is required to develop a mathematical model used 
to predict aerodynamic loading

• Methodology involves an experimental approach executed 
with a mechanical load system
– Both manual and automated



Internal Balance Measurements
• Internal balance located in aircraft model

• 6 degrees of freedom, Measures:
– 3 forces: N A S

– 3 moments: P R Y

I t l St i
Metric end (model attachment)

Sting

Internal Strain 
Gauge Balance



Internal Strain Gauge Balance
Metric end

(Model attachment)
Sting Connection

(support)

Beams with strain gauges

Sensitive to force and moment

directionsdirections

Input: Aerodynamic Forces (3) and Moments (3)

Output: 6 Voltages from excited strain gage bridges Output: 6 Voltages from excited strain gage bridges



Balance Calibration
• Calibration method

Apply known combinations of loadings and collect– Apply known combinations of loadings and collect 
voltage responses from the balance

– Build an empirical math model– Build an empirical math model

• No pure loads – interactions will occur
S d i b h i i i– Structure design to best characterize interactions

• Historically has been very labor intensive and 
time consuming



Interactions
L k t i f b f i l d i A i l di ti b t bj t t• Look at a pair of beams for measuring load in Axial direction but subject to 
simultaneous loading in Normal direction 

Axial + Normal
No Load Pure Axial

Axial  Normal

Strain Gauges

• 27 term math model for each component, example of Axial force

)( YRPSNAvoltsAxial YRPSNA 

  22 NAASAN NNAAASAN 



Automated Balance Calibration Example
• NASA LaRC Single Vector System (SVS)
• DOE‐based calibration – Central Composite Design
• Automated calibration machineAutomated calibration machine
• Typically 24 hour calibration duration
• Currently limited to balance capacities less than 3000 lbs



Manual Calibration Methods
• Traditionally done with dead weight loading in fixtures with 

cables and levers to apply loads and moments

• Time consuming – traditional cal takes 3 weeks or more• Time consuming – traditional cal takes 3 weeks or more

• Required for high capacity balances 

Knife Edge

Balance in 
Load Fixture

Applied LoadApplied Load
on weight pan 

below



High‐Capacity Balance
Calibration Process

• Traditional Experimental Approach
– Extensive load matrix changing one axis at a time – 729 points

– Data used to build second order empirical models

– Proven accepted method in use for 50 years– Proven, accepted method in use for 50 years

• Mechanical Calibration System
– Reliable, dependable, accurate

– Heavy loads, slow process 
– 3 to 4 weeks

– Consider a DOE approach



Test Matrix Issues
• Which combinations of forces and moments?

– Ideally, simultaneous loading in all forces and moments for 
h ( d h i f h) i d i deach run (and changing after each) is desired

• Limitation of manual calibration stand – level of difficulty increases 
from one to six simultaneous loads

– The original 729‐point uses 5 levels in a pyramid scheme
– SVS uses 5 levels in modified CCD
– Quadratic models require only 3 levelsQuadratic models require only 3 levels

• What about the test sequence?
– Randomized test sequence is ideal to minimize the effects 
of unwanted variability on model estimation

– Increases overall test time due to assembly configuration 
changeoverschangeovers



Chosen Design Approachg pp
Normal Axial Pitch Roll Yaw Side Runs

±1 ±1 0 0 0 0 4
±1 0 ±1 0 0 0 4

• Based on modified
Box‐Behnken design

±1 0 ±1 0 0 0 4
±1 0 0 ±1 0 0 4
±1 0 0 0 ±1 ±1 4
±1 0 0 0 0 ±1 4

• 3 levels hi,mid,low
• Primarily two factors 

at a time ±1 0 0 0 0 ±1 4
0.13 ±1 ±1 0 0 0 4
0.06 ±1 0 ±1 0 0 4

0 ±1 0 0 ±1 0.13 4

at a time
‐ Mechanical constraints
force several > 2

l f l d 0 ±1 0 0 0 ±1 4
0.19 0 ±1 ±1 0 0 4
0.13 0 ±1 0 ±1 ±1 4

• Total of 65 loadings
versus traditional 729

• Chose off‐center
0 0 ±1 0 0 ±1 4
0 0 0 ±1 ±1 0.25 4
0 0 0 ±1 0 ±1 4

zero run 
‐ Could be omitted and 

left as  zero loading 
0 0 0 0 ±1 ±1 4

0.10 0 0.10 0.10 0.10 0.10 5
for further efficiency



Trial Calibration Summary
T i l difi d BBD k 90 h (l i b l d)• Trial modified BBD took 90 hours (low capacity balance used)

• Traditional 729 OFAT cal on same balance takes 120 hours
– For a high capacity balance it takes approximately 200‐240 hoursFor a high capacity balance it takes approximately 200 240 hours

– Time savings should be much more significant with the heavy capacity 
balance and new method, estimated 40‐50% time savings

• In addition, new design has
– Higher statistical power than traditional design in ability to estimate 

d lmodel terms

– Robust estimates of uncertainty

• Challenges ‐ Culture
– Convincing technicians and managers that:

• Randomization is requiredq

• 3 levels are enough to define the desired quadratic model



External Balance Calibration

• External balance is 
external to aircraft/external to aircraft/ 
model

• Linkages between model 
and platform/ platform 
and scales

• Example from NASA• Example from NASA 
LaRC Full‐Scale Tunnel 
(later called LFST)

• Original engineering 
drawing form 1930’s



Inspiration
• Fall of 2005• Fall of 2005

– Minor flooding required rebuilding of FST external balance
– Boeing Phantom Works hires ODU to test X‐48B in spring of 2006

F h lib ti i d• Fresh calibration required
– Small differences in link lengths and relative angles as result of 

refurbishment



Calibration Approach

• Differs from internal balance 
C lib ti t b d i th f ilit– Calibration must be done in the facility

• Desire to minimize downtime of facility

• No standard loading apparatus (compared to cal. stands)

h d l l b d l t d h– The traditional calibration model is 1st order without  interactions

– Easier to perform multi‐component loading (min deflection)

• Common to both approaches, requirepp , q
– Sufficient statistical power for model term estimation

– Robust estimates of uncertainty

Minimum number of loadings– Minimum number of loadings

– Provision for interactions

– Test for model adequacy



Calibration Load FrameCalibration Load Frame
• A rigid frame is positioned on the wind tunnel 

i f ll l iaircraft support struts to allow multi‐component 
loading

W i ht h b l t t it h & ll• Weights are hung below to generate pitch & roll 
moments, normal force

• Cables and pulleys are used to generate side and• Cables and pulleys are used to generate side and 
axial force, yaw moment

• Load frame and cables must be level/orthogonal• Load frame and cables must be level/orthogonal 
– Usually only have to do this once as compared to internal 
balance cal where it has to be adjusted for every run
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Design ChoiceDesign Choice
• A 2VI6‐1  two‐level fractional factorial design 

– Run efficient 32 + centers and validation points– Run‐efficient 32 + centers and validation points
– Provides minimum 
desired model order 
(f t l)   

k

jiijiio xxxy 
(from past cal)

• Fully randomize the test matrix
– Protect against lurking vars e g temp

 
 i ji

jiijiioy
1



Protect against lurking vars. e.g. temp

• Load all components simultaneously
– Run efficient, identifies interactions

• Modifications were required to the  ideal design points 
due to finite load combination limits



Test Matrix DevelopmentTest Matrix Development

• Sufficient statistical power 
– drives number of runs chosen

• Weigh‐beam balance design meansWeigh beam balance design means 
relative loadings
– 0 to 1000 lbs or ‐500 to +500 same results0 to 1000 lbs or  500 to +500 same results

• Load ranges chosen
P di t d l d X 48B– Predicted loads on X‐48B

– Availability of weights

b f l l d– Distribution of multi‐component loadings



Ideal Half Fraction Achievable Factor Levels
Std Run Normal Axial Side Pitch Roll Yaw Normal Axial Side Pitch Roll Yaw

Order Order
33 1 -500.0 75.0 25.0 1440.0 721.0 177.7 -500.4 80.0 30.0 2312.9 721.0 123.3
10 2 0 0 0 0 0 0 3400 0 1 5 4 6 0 0 0 0 0 0 3234 5 1 5 0 0

ab
le

10 2 0.0 0.0 0.0 3400.0 1.5 -4.6 0.0 0.0 0.0 3234.5 1.5 0.0
36 3 -500.0 75.0 25.0 1440.0 721.0 177.7 -500.4 80.0 30.0 2312.9 721.0 123.3
15 4 -1000.0 150.0 50.0 3400.0 1.5 360.0 -1000.9 150.0 50.0 3496.2 443.8 358.0
20 5 0.0 150.0 0.0 -513.3 1229.0 360.0 0.0 150.0 0.0 29.2 1.5 302.6
35 6 -500.0 75.0 25.0 1440.0 721.0 177.7 -500.4 80.0 30.0 2312.9 721.0 123.3
30 7 0.0 0.0 50.0 3400.0 1229.0 -4.6 0.0 0.0 50.0 3234.5 1229.0 55.5
4 8 0 0 150 0 0 0 513 3 1 5 4 6 0 0 150 0 0 0 29 2 1 5 4 6

hi
ev
a 4 8 0.0 150.0 0.0 -513.3 1.5 -4.6 0.0 150.0 0.0 29.2 1.5 -4.6

17 9 -1000.0 0.0 0.0 -513.3 1229.0 360.0 -1000.9 0.0 0.0 -227.0 1086.9 307.2
25 10 -1000.0 0.0 0.0 3400.0 1229.0 -4.6 -1000.9 0.0 0.0 2082.5 1088.4 0.0
34 11 -500.0 75.0 25.0 1440.0 721.0 177.7 -500.4 80.0 30.0 2312.9 721.0 123.3
9 12 -1000.0 0.0 0.0 3400.0 1.5 360.0 -1000.9 0.0 0.0 2857.5 -31.0 307.2

22 13 0.0 0.0 50.0 -513.3 1229.0 360.0 0.0 0.0 50.0 0.0 1227.5 362.7
16 14 0 0 150 0 50 0 3400 0 1 5 4 6 0 0 150 0 50 0 3860 5 102 9 50 8

. A
ch

16 14 0.0 150.0 50.0 3400.0 1.5 -4.6 0.0 150.0 50.0 3860.5 102.9 50.8
23 15 -1000.0 150.0 50.0 -513.3 1229.0 360.0 -1000.9 150.0 50.0 -513.3 1193.9 358.0
31 16 -1000.0 150.0 50.0 3400.0 1229.0 -4.6 -1000.9 150.0 50.0 3455.3 1196.4 50.8
29 17 -1000.0 0.0 50.0 3400.0 1229.0 360.0 -1000.9 0.0 50.0 2870.2 1197.9 362.7
5 18 -1000.0 0.0 50.0 -513.3 1.5 360.0 -1000.9 0.0 50.0 -227.0 77.0 362.7
7 19 -1000.0 150.0 50.0 -513.3 1.5 -4.6 -1000.9 150.0 50.0 -513.3 76.0 50.8

al
 v
s 26 20 0.0 0.0 0.0 3400.0 1229.0 360.0 0.0 0.0 0.0 3234.5 1119.5 307.2

28 21 0.0 150.0 0.0 3400.0 1229.0 -4.6 0.0 150.0 0.0 3072.8 1119.5 -4.6
21 22 -1000.0 0.0 50.0 -513.3 1229.0 -4.6 -1000.9 0.0 50.0 -227.0 1194.9 55.5
3 23 -1000.0 150.0 0.0 -513.3 1.5 360.0 -1000.9 150.0 0.0 -513.3 -31.0 302.6
6 24 0.0 0.0 50.0 -513.3 1.5 -4.6 0.0 0.0 50.0 0.0 109.5 55.5

14 25 0.0 0.0 50.0 3400.0 1.5 360.0 0.0 0.0 50.0 3234.5 109.5 362.7

Id
ea 12 26 0.0 150.0 0.0 3400.0 1.5 360.0 0.0 150.0 0.0 3682.4 0.0 302.6

24 27 0.0 150.0 50.0 -513.3 1229.0 -4.6 0.0 150.0 50.0 29.2 1226.4 50.8
1 28 -1000.0 0.0 0.0 -513.3 1.5 -4.6 -1000.9 0.0 0.0 -227.0 -32.5 0.0
2 29 0.0 0.0 0.0 -513.3 1.5 360.0 0.0 0.0 0.0 0.0 0.0 307.2

11 30 -1000.0 150.0 0.0 3400.0 1.5 -4.6 -1000.9 150.0 0.0 3455.3 -32.5 -4.6
32 31 0.0 150.0 50.0 3400.0 1229.0 360.0 0.0 150.0 50.0 3072.8 1229.0 358.0
13 32 -1000.0 0.0 50.0 3400.0 1.5 -4.6 -1000.9 0.0 50.0 3467.0 78.5 55.5
19 33 -1000.0 150.0 0.0 -513.3 1229.0 -4.6 -1000.9 150.0 0.0 -513.3 1088.4 -4.6
18 34 0.0 0.0 0.0 -513.3 1229.0 -4.6 0.0 0.0 0.0 0.0 1119.5 0.0
27 35 -1000.0 150.0 0.0 3400.0 1229.0 360.0 -1000.9 150.0 0.0 3455.3 1086.9 302.6
8 36 0.0 150.0 50.0 -513.3 1.5 360.0 0.0 150.0 50.0 29.2 102.9 358.0



Minor Effects on Chosen ModelMinor Effects on Chosen Model

• Power is only slightly effected
Power at  = 5%

Term VIF 1 Std. Dev. 2 Std. Dev.
A 1 05 70 9 % 99 9 %Power is only slightly effected

at the desired 2 std dev level
– ME’s 99.9 vs. low 96.1

A 1.05 70.9 % 99.9 %
B 1.08 69.7 % 99.9 %
C 1.07 70.5 % 99.9 %
D 1.15 46.3 % 96.1 %
E 1.11 56.6 % 98.9 %
F 1 09 55 6 % 98 7 %

– 2FI’s  99.9 vs. one low of 87
F 1.09 55.6 % 98.7 %

AB 1.08 69.9 % 99.9 %
AC 1.09 69.3 % 99.8 %
AD 1.11 47.0 % 96.4 %
AE 1.10 56.8 % 98.9 %
AF 1 08 55 5 % 98 7 %

• VIF evaluates multicolinearity
– R.O.T desire <10

h h

AF 1.08 55.5 % 98.7 %
BC 1.07 70.1 % 99.9 %
BD 1.11 46.5 % 96.2 %
BE 1.14 55.3 % 98.6 %
BF 1.10 54.5 % 98.5 %
CD 1 07 48 1 % 96 8 %– 1.18 is the worst case here
CD 1.07 48.1 % 96.8 %
CE 1.06 57.8 % 99.0 %
CF 1.05 55.8 % 98.7 %
DE 1.18 35.1 % 88.1 %
DF 1.14 34.0 % 87.0 %
EF 1 14 42 6 % 94 2 %EF 1.14 42.6 % 94.2 %



Calibration Summary
• Successes

– 32 factorial runs + 4 centers + 5 validation points = 41 total 
l diloadings

• Passed test for lack of fit 

• If a higher order model is required, easy to augment to CCD

• Future calibrations or check cals could use 2IV6‐2 as only a few 2FI’s 
found

– Minor changes in set points from standard design hadMinor changes in set points from standard design had 
negligible impact on model quality

– 13 hours vs. 40 hours of previous OFAT calibration

– Robust validation of first order + 2 FI model and 
uncertainty level estimation

A successful test of the X 48B and later X 48C followed the– A successful test of the X‐48B and later X‐48C followed the 
calibration



Calibration Summary
• Challenges – Mostly Cultural

Simultaneous multi component loading requires that– Simultaneous multi‐component loading requires  that 
more weights be available versus previous OFAT design

– Engineers have traditionally felt that a load sequence 
involving 5 or more levels is required 

• to characterize an essentially first order system ?

Technicians have to be taught to accept the fully– Technicians have to be taught to accept the fully 
randomized test sequence 

• Always a struggle as they think they are “doing it the hard way”



Background: Blended Wing Body at the LFST

Year long test program 2005‐2006
• NASA Static model testing
• NASA Free flight model testing• NASA Free flight model testing
• Boeing X‐48 B  flight model

3 Month Program in 2009g
• Boeing X‐48 C  flight model

25



Typical Low‐Speed Wind Tunnel 
Test ObjectivesTest Objectives

• Aerodynamic Characterization 
– A math model describing each response in terms of all the 
factors i.e. CD=CD(,…)

• Stability and Control analysis
• Computer flight simulations

– Limits to flight (eg. stall)

• Capture the true uncertainty in testing• Capture the true uncertainty in testing
– The sum of error due to:

• Setting the control surfaces
• Setting attitude
• Force balance variances
• Dynamic pressure measurement
• Environmental effects



Low Speed Wind Tunnel Testingp g

• DOE methods are a natural fit for aerodynamic 
h i icharacterization
– Typically large number of factors involved

• Control surface deflections (at least 3‐5 typically)• Control surface deflections (at least 3‐5 typically)

• Attitude – 2 factors, sideslip and angle of attack

• Power effects – thrust simulation

• Landing gear up/down

• Configuration changes (eg. Slat A or B)

– Use of actuated control surfaces helps accommodateUse of actuated control surfaces helps accommodate 
randomization

• Loads at relatively low dynamic pressure will allow



BWB Case StudyBWB Case Study

• Potential Factors
– 18 trailing edge mounted elevons

– 3 pylon mounted
engines with thrust simulation

– 2 Leading edge slats

– 2 Winglet rudders



5% Scale Static Testing at the LFST5% Scale Static Testing at the LFST
• Objectives

– Aerodynamic characterization including
• Static stability

l• Control power

• Sting supported

• Internal Balance

• Remotely actuatedy
surfaces

• Air ejectors for thrustAir ejectors for thrust



Stability and Control TestStability and Control Test
• A subset of controls were chosen 

– Due to actual model limitations of ganged surfaces– Due to actual model limitations of ganged surfaces
– Due to limited resources for the DOE test

• Look at response due to left wing control surfaces
U f ll f f d fl ti– Use full range of surface deflections

– Look at one right wing surface 
• Interested in possible interactions with adjacent 

surfaces
• Angle of attack chosen to bracket cruise conditions

(angular orientation in vertical plane)(angular orientation in vertical plane)
• Small sideslip range (angular orientation in 

horizontal plane)



BWB Model Control SurfacesBWB Model Control Surfaces

8-9

Split Surfaces

6-7



8 Factors Chosen

All are given in degrees

Factor Factor ID Low Center High Constraints

g g

Factor Factor ID Low Center High Constraints
 A 4 7 10 none
 B -5 0 5 none

 C 30 5 20R25 C -30 -5 20 none
1 D -30 -5 20 none
 E 30 5 20 noneL25 E -30 -5 20 none
L67 F -30 10 50 F - G > 5
L89 G -50 -15 20 F - G > 5L89 G 50 15 20 F  G > 5
Lrud H -20 5 30 none



BWB DOE Design Criteria
• Allow at least 3 levels for control surface set points
• Robust to control surface set point error

l f f• Model order for force and moment responses
– Pure quadratics, possible 2 F.I.’s and 3 F.I.’s
– Can sequentially augment design by adding design points to build 

higher order model if required

• Design must accommodate constraints, modified CCD used



Experiment DetailsExperiment Details

F ll d• Fully automated test 
– Control surfaces actuated
A i d l d– Attitude control programmed

• Fully randomized test matrix 
• Use 2 Blocks

– Day 1: ½ Fraction factorial and ½ of center points
– Day 2: Axials and remaining center points

– Blocks to protect against “nuisance factors”



Results: Comparison to OFAT
• Example: Left Ganged Elevons 2‐5 versus angle of attack, 

response is Normal forceresponse is Normal force

• Half the data volume vs. OFAT

• Statistically
justified
uncertainty
estimatesestimates

• Regression
model as function
of all factors

• All potential 
InteractionsInteractions 
modeled



OptimizationOptimization

• Complex control surface configurations present an p g p
interesting opportunity in that choices arise in 
allocation of surfaces to achieve specific control 
objectivesobjectives 

• DOE regression models include effects of all control 
surfaces and interactions – a natural for optimizationsurfaces and interactions  a natural for optimization

• Example (using Desirability approach)
– Using any combination of control surfaces tested
– Find maximum yaw moment magnitude with minimum roll 
magnitude



Example: Max Yaw for Min RollExample: Max Yaw for Min Roll

• Results show elevons 6‐7 down and 8‐9 
up at the optimum, winglet rudder 
full deflection with 2‐5 used to “trim” 

• Roll moment (C ) was nearly zero with• Roll moment (Cl) was nearly zero with
yaw moment (Cn) 90 % of maximum

S l ti     C C /C D i bilitSolution L25 L67 L89 Lrud Cn (% Best) Cl/Cn (%) Desirability
1 -6.44 40.00 -33.98 30.00 90.11 0.842 0.823
2 -11.54 40.00 -35.85 30.00 100.00 80.686 0.806
3 -10.10 40.00 -13.39 29.93 73.61 0.000 0.7893 10.10 40.00 13.39 29.93 73.61 0.000 0.789
4 2.69 -26.45 -35.83 30.00 71.63 0.001 0.785
5 2.50 -25.08 -35.85 29.97 70.61 0.188 0.783
6 -3.22 17.80 -35.85 30.00 69.77 -0.003 0.781
7 1 45 17 31 35 85 29 88 65 91 0 003 0 7737 1.45 -17.31 -35.85 29.88 65.91 -0.003 0.773



SummarySummary
• Regression models developed for all aerodynamic 
forces and moments as a function of 8 factorsforces and moments as a function of 8 factors

• Uncertainty estimates including effects of exercising 
all factorsall factors
– Researchers initially felt these estimates were high after 
comparing to OFAT estimates

– Residual analysis revealed problems with actuated 
surfaces reaching set points that were undiagnosed in 
preceding 2 week long OFAT investigationpreceding 2‐week long OFAT investigation

• Identification of interactions on new configuration

• Optimization opportunities• Optimization opportunities



Low Speed Wind Tunnel Test Challenges: 
Hi hl N Li R iHighly Non‐Linear Regions

• How to model with low order polynomials• How to model with low order polynomials
– Rolling moment of X‐31 high‐performance aircraft example
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2 0
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80-20
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Highly Non‐Linear Regions
• Exploratory study requiredExploratory study required

• Higher order hybrid designs valuable

• Design space may be broken into subspaces

B+

– Issue often cited is how to handle adjacent 
spaces at the borders

• Fairing functions 
A +A -

B-

Nested FCD Hybrid
• Final use is typically lookup tables 

 Baseline  CL vs. 
1.4

Nested FCD Hybrid

0.6

0.8

1

1.2

C

-0.2

0

0.2

0.4
CL







RSM L RSM Hi h
-0.4

-10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75


RSM Low RSM High



LSWT Challenges: Hard‐To‐Change Factors
• Factor choices that require replacement of parts may be impractical for a• Factor choices that require replacement of parts may be impractical for a 

fully randomized design
– One solution is to run a split‐plot design, introduces multiple error sources

– Analysis is complicated but now supported by commercial software– Analysis is complicated but now supported by commercial software

• Example MAV, wingtip height is hard‐to‐change (a whole plot factor), 

A‐o‐A and Yaw are easy to change (subplot factors)

Standard 
Order Run Order Wingtip Height AoA Yaw Angle

20 1 3 6 0
17 2 3 14 0
19 3 3 6 10
16 4 3 -2 0
18 5 3 6 -10
14 6 4 14 10
12 7 4 -2 10
11 8 4 -2 -10
15 9 4 6 0
13 10 4 14 -10
2 11 2 -2 10
1 12 2 -2 -10
3 13 2 14 -10
5 14 2 6 0
4 15 2 14 10

10 16 3 6 0
9 17 3 6 10
6 18 3 -2 0
8 19 3 6 -10
7 20 3 14 0



High Speed Wind Tunnel Testing Challenges

• Traditional DOE methods rely on randomization, 
difficult for:
– Factors of Reynolds and Mach number  

• Resource intensive to randomly set combinations

Control surface deflections as factors– Control surface deflections as factors

• Loads are often too high to use actuators 

• fixed brackets are common (and make for hard tofixed brackets are common (and make for hard to 
change factors)

– Factors sideslip and angle of attack

• Often possible to automate

• Again, one solution is a split plot design structure



Challenge: Training
• How do we train the engineering staff in use of DOE ?• How do we train the engineering staff in use of DOE ?

– Experience with training at AEDC 
• Culture change observations• Culture change ‐ observations

– It’s a steep learning curve for those that have never studied 
statistics or regression

h h ll b d f h h– Focus has historically been on rapid acquisition of  high precision 
data ‐ not empirical model adequacy/quality

– Sequential experimentation is often viewed as unnecessary

– Fractional factorials felt to leave too much up to chance

• Aversion to randomization
– Many hard to change factors in AEDC facilities works against easyMany hard to change factors in AEDC facilities works against easy 
adoption of DOE

– Reliable, low noise experimental facilities often breed cavalier 
attitudes: “Protect against what lurking variable – we don’t haveattitudes:  Protect against what lurking variable  we don t have 
those”
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Some Personal Background

• University of Florida

– Typical Academic Career

– Large Amount of Consulting

• Through the University

• Outside the University

– Gates Aerospace Batteries:  LEO – ISS Batteries



Some Personal Background

• Virginia Tech
– Department Head 

• “Seven years of college down the drain.”

• Corporate Partners Program

– Consulting as a Full Professor
• Pratt & Whitney

• NASA LaRC

• NESC

• DoD

– Mostly, Design of Experiments



My Background with NASA

• LaRC
– Dr. Parker Was My Ph.D. Student

– First Collaborations Were with the Atmospheric 
Sciences

– Recently, Working on Calibration
• ARES

• AirSTAR

• Force Measurement Systems

• A.G. Davis System

– Two Publications to Date



My Background with NASA

• NESC – COPV

– Ultimate Question:  Probability of Failure for a 
COPV at Use Conditions at Specific Time in Future

– Design of Experiments for Reliability Data

• DOE People Rarely Understand Lifetime Data

• Reliability Experts Rarely Understand the Nuances of 
DOE

– Initial Work:  Testing “Strands”

– Some Preliminary Work:  Vessels



Reflections

• My Primary Involvement:  Technical Expert

– Some Work Helping to Define the Problem

• Usually, Initial Work Already Done on Problem Definition

• My Job:  Refine and Clarify as Needed

– Project Manager

• Supervise Graduate Students

• Administration

• Provide Technical Guidance – Both for VT and NASA

• “The Right Tool for the Right Job.”

– Major Contribution:  Big Picture



Reflections

• As a Rule, NASA Under-Utilizes Statistics and 
Statisticians
– NASA Employs Very Few True Statisticians

– Most Engineers/Scientists Have Limited Command 
of Proper Statistical Procedures

• A Large Amount of Mathematical Modeling, 
but Very Little Statistical Modeling

• Combination Can Lead to Questionable 
Practices



Reflections

• Very Little Statistical Thinking within NASA
– All Work Occurs in Systems of Interconnected 

Processes

– Variation Exists in All Processes

– Keys to Success:  Understanding and Reducing 
Variation

• Many NASA Statisticians Are Pure Data Analysts, 
Not Scientific Collaborators/Leaders

• Strong Agency Need for True Statistical 
Engineering and Statistical Leadership



Reflections

• Statistical Engineering and My Involvement
– My Work with Dr. Parker:  Statistical Engineering

• Problem Selection

• Decisions about Tactical Deployment

• Focus on Big Picture and Value Added

– Otherwise:  Traditional Consulting
• One Step Below Tactical

• Focus on Reasonable Solutions to Specific Problems

• Teaching Graduate Students to Consult

• “Tool” in the Nascent Statistical Engineering Effort



Reflections

• Benefits to Date:  Virginia Tech

– Teaching Graduate Students to Consult with 
Practicing Engineers and Scientists on Real 
Problems 

– Students See:  Good, Bad, Ugly

– Publishing Research Papers Based on Real 
Engineering and Science Problems

– Pride in Helping a Distinguished Gov. Agency



Reflections

• Benefits:  NASA

– Technical Support Not Available within the Agency

• Limited Number of Statisticians within the Agency

• Academics Often are the Leading Experts in the Field

– Pipeline for Hiring Ph.D. Statisticians

• Already Familiar with the NASA, Its Mission and Culture

• Real Practical Experience with Agency Problems

– Standard Benefits from University/Agency 
Collaboration



Opportunities

• Can Achieve Benefits Far Above Standard 
University/Agency Collaboration!

• Implement on a Broader Scale True Statistical 
Engineering

• Biggest Initial Contributions:
– Statistical Thinking/Clear Problem Definition

– Sound Structured Approaches to Solving Problems

• At Least Initially, Take Advantage of Academic 
and Professional Expertise 



Opportunities

• NASA Technical Leadership Needs to Provide 
the Strategic Vision

– Set Agency – Wide Goals and Objectives

– Recruit Appropriate Personnel from within NASA

– Manage the Entire Process 

• “NASA Statistical Engineering Group”

– Develop Tactical Plans to Achieve Strategic Goals

– Manage Specific Projects Selected by Leadership



Opportunities

• NASA Deals Daily with Highly Complex 
Problems

• A Large Portion of These Problems Have 
Significant Statistical Components
– Some Cases, Understood

– Far Too Many Cases, Not Understood!

• Statistical Engineering Provides Tactical 
Deployment of Sound Statistical Practices to 
Support the Engineering/Scientific Method



Opportunities

• Complex Problems Require Appropriate Solutions
– Team Approach to Solutions

– Clear and Precise Problem Definitions

– Avoid Errors of the Third Type!

– Systems Thinking

– Understanding Sources of Variation

– Appropriate Data

– Tactical Deployment of Analytics

• Statistical Engineering Is an Appropriate 
Approach!



Opportunities

• Implementing Statistical Engineering Is a 
Journey

• Academia and the Profession Can Provide 
Excellent Guides

• The Process Leads to Better Science and 
Engineering, Which Is Core to NASA’s Mission



Design of Experiments in 
Measurement System 

Characterization and Uncertainty

Tom Johnson

03/22/11

NSES 05/04/2011 1



Outline

1. In-Flight Force Measurement Method

2. Non-monolithic Calibration Design

3. Variable Acceleration Calibration System

4. Center of Gravity Determination Method

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov



In-Flight Force Measurement Method
• What is the problem?

– There is a requirement for an 
alternative method to monitor in-flight 
loads experienced by a particular 
spacecraft during launch 

• Why does it matter?
– To properly understand the physics of 

the problem
– To ensure the safety of the spacecraft
– to achieve a successful launch

• Who does it matter to?
– Engineers, researchers
– Customers using the delta II rocket
– Boeing to maintain a reliable track 

record
• Project Objective

– Monitor loads exerted on spacecraft 
during launch  (pre-determined)

– Adapt a structural piece of a Boeing 
delta II rocket, called a Payload 
Attachment Fitting (PAF), into multi-
component force transducer (also pre-
determined)

• What is the PAF?

05/04/2011 NSES Thomas.H.Johnson@nasa.gov

“A Multi-Component Force Transducer Design from an Existing Rocket 
Payload Attachment Fitting,” Johnson,T.; Landman,D; Parker, P.; AIAA-
2009-1716, AIAA USAF T and E Days 2009, Albuquerque, NM, February 
10-12, 2009.



In-Flight Force Measurement Method
• Proposed Solution Framework 

1. First, optimize strain gauge locations
on the PAF using computer simulation 
(Finite Element Analysis)

2. Instrument PAF according to strain 
gauge location optimization study

3. Perform a ground based calibration
4. Use in-flight data with the calibration 

models to obtain in-flight forces

• Strain gauge optimization method
– Objective: determine strain gauge 

locations that maximize the sensitivity 
of the reading for a given force 
component, while minimizing 
interactions effects due to other forces.

– Using design of experiment, a factorial 
design was run to model strain as a 
function of applied forces at each 
element in the FEA model.

– Factors (6): applied loads
– Responses (>10,000): strain at each 

element 

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov



In-Flight Force Measurement Method
• optimization method (continued)

– The next step of the problem is to find 
combinations of 4 strain locations that 
maximizes sensitivity while minimizing 
interaction effects

– Since Wheatstone bridges require 4 
gauges

– Numerical search method used to find 
best combination of gauges for each 
model

– 4 gauges for each component resulted 
in 24 gauge locations total

• Optimization results
– Approximate 10 lb resolution

• Proposed next steps
– Instrument the PAF
– Perform ground based calibration

• Conclusion
– A completely unique method for 

determining gauge location methods 
was demonstrated

– Design of experiments was used to 
make efficient use of computational 
resources 

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov

n – varies from 1 to 12,302 , 1 for each

element of the finite element model

Main effects
coefficients

Applied loads
2FI’s

Strain at a finite element



Outline
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3. Variable Acceleration Calibration System

4. Center of Gravity Determination Method



Non-Monolithic Calibration Design
• What is a force balance?
• What is the problem?

– It is nationally recognized that current 
methods used to model non-monolithic 
force balances is inadequate

• Why does it matter?
– There are many non-monolithic 

balances currently being used to 
characterize the performance of 
tomorrows space vehicles

– The performance of future missions 
relies on the accuracy of wind tunnel 
tests

• Who does it matter to?
– Force measurement community
– AIAA reccommended standard 

calibration practices document
– Project leaders

• Project Objective
– Demonstrate shortcomings of current 

recommended procedure
– Propose alternative solutions

• What is a non-monolithic balance?

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov

Johnson, T. H., Parker, P.A., Landman, D., “Calibration Modeling of Nonmonolithic Wind-Tunnel Force 
Balances,” AIAA-46356-110 , AIAA Journal of Aircraft, Vol. 47, No. 6, Nov-Dec 2010.



Non-Monolithic Calibration Design
• Current standard procedure recommends using the 

model shown below

• Takes a heavily parameterized approach

• Includes absolute value terms to model asymmetry in 
the response

• The problem with the model is that it is over 
parameterized

• Certain parameters in the model should not co-exist 
no matter what experimental design is used

• The figure to the bottom right shows response 
surfaces of various effects from the model

• Variance Inflation Factors are used to show multi-
collinearity between model parameters

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov

Johnson, T. H., Parker, P.A., Landman, D., “Calibration Modeling of Nonmonolithic Wind-Tunnel Force 
Balances,” AIAA-46356-110 , AIAA Journal of Aircraft, Vol. 47, No. 6, Nov-Dec 2010.



Non-Monolithic Calibration Design

Eq # Model Parameters Design # of Runs

1 Independent 28 2 CCDs 128

2 Cubic 55 Draper 228

3 Absolute Value 34 Draper 228

4 Indicator Variable 28 2 CCDs 128

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov
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Variable Acceleration Calibration System
• What is a calibration system?
• What is the problem?

– Calibration of large-scale internal wind 
tunnel force balances is expensive and 
inefficient.

• Why does it matter?
– Large balances are needed for 

experimentation in NASA wind tunnels
– Needed for full-scale wind tunnel test 

or semi-span tests 
• Who does it matter to?

– Force balance community, wind tunnel 
researchers, project engineers

• Project Objective
– Design, fabricate and test two proof of 

concept variable acceleration 
calibration systems

– Verify the applied load accuracy is 
within the predicted bounds

– Propose next stage of system 
development

• Novelty of approach
– Applies centripetal and gravitational 

force to a balance to reduce the time 
associated with moving weight

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov



Variable Acceleration Calibration System

1. Design 
Experiment

2. Physics Model

3. Mechanical 
Design

4. Run 
Experiment

5. Verification

05/04/2011 NSES Thomas.H.Johnson@nasa.gov

• 3 Factors: Normal Force (NF) (lbs), Axial Force (AF) (lbs), Pitching Moment (PM) (in-lbs)

• 3 Responses: NF (volts), AF (volts), PM (volts)

• Fully replicated central composite design in two blocks

NF (lbs) AF (lbs) PM (in-lbs)

Balance Design Loads 100 60 800

Calibration Loads 30 20 120



Variable Acceleration Calibration System

1. Design 
Experiment

2. Physics Model

3. Mechanical 
Design

4. Run 
Experiment

5. Verification

05/04/2011 NSES Thomas.H.Johnson@nasa.gov

• Develop a physics-based 
prediction model to determine 
independent variable settings 
required to apply loads

• Determine predicted uncertainty 
using propagation of uncertainty 
analysis

• Predicted independent variable 
uncertainty contributions shown 
to right for each run in calibration 
experiment



Variable Acceleration Calibration System

1. Design 
Experiment

2. Physics Model

3. Mechanical 
Design

4. Run 
Experiment

5. Verification

05/04/2011 NSES Thomas.H.Johnson@nasa.gov

Off-Center System

Centered  System



Variable Acceleration Calibration System

1. Design 
Experiment

2. Physics Model

3. Mechanical 
Design

4. Run 
Experiment

5. Verification

05/04/2011 NSES Thomas.H.Johnson@nasa.gov



Variable Acceleration Calibration System

1. Design 
Experiment

2. Physics Model

3. Mechanical 
Design

4. Run 
Experiment

5. Verification

05/04/2011 NSES Thomas.H.Johnson@nasa.gov

• Verify applied load error is within 
predicted uncertainty

• Predicted uncertainty contains 
• Uncertainty predicted using 

propagation analysis
• Balance measurement 

uncertainty
• Pure error (noise)

• Applied Load error is the physics 
model predicted loads minus 
balance measured loads (shown in 
red in figure to right)

• Residual Analysis
• plot applied load error vs. 

independent variable
• Plot pure error vs. independent 

variable graphs
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Center of Gravity Determination Method

• What is the problem?
– CAD center of gravity results are not 

perfect.  Experimental verification is 
often required for space vehicles.

• Why does it matter?
– Center of gravity info is critical to 

guidance, navigation and control of 
spacecrafts.  

• Objective
– Create a inexpensive and efficient 

experimental method to determine the 
center of gravity of a space vehicle

– Provide repeatable and statistically 
defendable results

• How does it work?
– Geometry measurements are recorded 

for multiple test article hang 
configurations

– A gravity vector is projected from the 
hang vertex in each configuration

– The center of gravity is found by 
determining the “intersection point” of 
the multiple gravity vectors.

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov



Center of Gravity Determination Method
• CG Method by Tom Jones, NASA LaRC
• My Contribution:

– Help mature a concept and define the 
uncertainty

• Reduce uncertainty by reducing prediction 
uncertainy, quantifying experimental 
uncertainty
– Proposed new hang angle to reduce 

intersection volume uncertainty
– Orthogonal intersection reduces volume 

of uncertainty by 15% (compared to 60 
deg intersection)

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov



Center of Gravity Determination Method

05/04/2011 NSES Thomas.H.Johnson@nasa.gov

0

0.0083

0.0166

0.0249

0.0331

0.0414

0.0497

0.058

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

u
n
it
 d

ir
e
c
ti
o
n
)

Stand Deviation of Unit Vectors

Hang Position (Plumb Line) [Group]

 

 

6
 (

2
) 

[3
] 

8
 (

1
) 

[1
] 

8
 (

2
) 

[1
] 

4
 (

1
) 

[4
] 

7
 (

1
) 

[4
] 

1
 (

2
) 

[1
] 

7
 (

2
) 

[4
] 

3
 (

1
) 

[3
] 

2
 (

2
) 

[2
] 

5
 (

1
) 

[2
] 

5
 (

2
) 

[2
] 

6
 (

1
) 

[3
] 

1
 (

1
) 

[1
] 

4
 (

2
) 

[4
] 

3
 (

2
) 

[3
] 

2
 (

1
) 

[2
] 0

1

2

3

4

5

6

7

D
e
g
re

e
s
 o

f 
F

re
e
d
o
m

 

 

6
 (

2
) 

[3
] 

8
 (

1
) 

[1
] 

8
 (

2
) 

[1
] 

4
 (

1
) 

[4
] 

7
 (

1
) 

[4
] 

1
 (

2
) 

[1
] 

7
 (

2
) 

[4
] 

3
 (

1
) 

[3
] 

2
 (

2
) 

[2
] 

5
 (

1
) 

[2
] 

5
 (

2
) 

[2
] 

6
 (

1
) 

[3
] 

1
 (

1
) 

[1
] 

4
 (

2
) 

[4
] 

3
 (

2
) 

[3
] 

2
 (

1
) 

[2
] 

RSS Stdev PL DOF

• Gravity vector construction contains 
uncertainty due to wind and water effects

• Each gravity line was formed using 2-5 
photogrammetry targets

• Pairs of targets within each gravity line were 
use to construct gravity direction

• The standard deviation was calculated for 
each line in each hang configuration to 
determine which lines had the most noise

• The lines with the least amount of noise 
were used for the CG calculation



• The center of gravity calculation was solved 
using a numerical minimization algorithm

• Objective was to find the point that 
minimized the distance between the 
selected gravity vectors

• The minimum distance between a point and 
a line formed by two points is

• The minimum distance was found with 
respect to each gravity vector.  

• The numerical algorithm minimized the sum 
of squares distances

• A Monte Carlo was run that perturbed the 
mean gravity vector directions by the 
standard deviations of each line

• The following results were obtained

Center of Gravity Determination Method

05/04/2011 NSES Thomas.H.Johnson@nasa.gov
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Conclusion

NSES 05/04/2011 Thomas.H.Johnson@nasa.gov

• Four examples of measurement uncertainty and characterization projects 
were presented that highlighted the benefits of design of Experiments

Special Thanks to:

• In-Flight Force Measurement
– Curt Larsen, NESC Johnson

• Non-monolithic Calibration Designs
– NASA Aeronautics Test Program (ATP), GSRP program

• Variable Acceleration Calibration System
– NASA LaRC Engineering Directorate, Co-op Program

• Center of Gravity Determination Method
– Tom Jones, NASA LaRC

• Ray Rhew, Peter Parker and Drew Landman
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INTEX

The Intercontinental Chemical Transport Experiment
(INTEX)

”INTEX (http://cloud1.arc.nasa.gov) is a two phase
experiment that aims to understand the transport and
transformation of gases and aerosols on
transcontinental/intercontinental scales and assess their
impact on air quality and climate.”

The experiment was performed in the spring of 2006.

The purpose of the project was to ”Quantify the outflow
and evolution of gases and aerosols from the Mexico City
Megaplex”.

2 / 57



Canonical
Correlation
Analysis for
Longitudinal

Data

Raymond
McCollum

Advisor
Dayanand

Naik

Topics

CCA

Repeated CCA

Existing
Solution

Estimation

Hypothesis
Testing

Analysis Air Tracks*
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INTEX*

Multiple air frames will measure air and pollutants along
the Mexican Coast.

NASA DC-8 flown out o Houston, Texas

NSF/NCAR C-130 from Tampico, Mexico

Air frames will travel in close proximity.

Data from multiple gasses will be recorded for each plane
and compared in an effort to calibrate the instrumentation.
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Canonical Correlation

Canonical correlation analysis (CCA) is used to identify and
characterize the relationship between two sets of random
vectors. Let Σx be the variance-covariance matrix of the px1
vector X , and let Σy be the variance covariance matrix of qx1
vector Y. Let the multivariate vectors X and Y have the
covariance matrix Σxy . [

Σy Σyx

Σxy Σx

]
(1)
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Classical Canonical Correlation*

The objective of canonical correlation analysis is to create a
relationship between the X variables and the Y variables. CCA
attempts to find a qx1 vector “a”and a px1 vector “b”to help
define the correlation between the two data sets. The vectors a
and b are chosen to maximize the correlation between a′Y and
b′X .
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Repeated Canonical Correlation*

CCA was generalized to more than two sets of variables by
Kettenring (1971)and other generalizations can be found in the
literature. Let X and Y be repeated over time. Let xi and yi be
vectors observed at the i th time period. Represent the time
periods by,

Y = (y′1, y
′
2, . . . , y

′
t) and X = (x′1, x

′
2, . . . , x

′
t). (2)
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Repeated Canonical Correlation*

For a CCA the with no additional time requirements, the
covariance matrix is, (

Σy Σyx

Σxy Σx

)
. (3)
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Repeated Canonical Correlation*

The total number of parameters that require estimation
becomes computationally intensive.

The Σy matrix has q(q + 1)/2 unique parameters.

The Σx matrix has p(p + 1)/2 unique parameters.

The Σxy matrix has pq unique parameters for the cross
correlations.

There are a total of p(p + 1)/2 + q(q + 1)/2 + pq unique
parameters that must be estimated. These values correspond
to one set of parameters recorded at one time period. When
sets of variables are recorded over time, the number of
parameters required increases quickly.
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Repeated Canonical Correlation*

For t time periods the matrix becomes,

Σy1y1 . . . Σy1yt Σy1x1 . . . Σy1xt
...

. . .
...

...
. . .

...
Σyty1 . . . Σytyt Σytx1 . . . Σytxt

Σx1y1 . . . Σx1yt Σx1x1 . . . Σx1xt
...

. . .
...

...
. . .

...
Σxty1 . . . Σxtyt Σxtx1 . . . Σxtxt


(4)

This has a total of t(p+q)(t(p+q)+1)
2 parameters.
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Repeated Canonical Correlation*

The Kronecker product covariance structure can be used to
reduce the number of parameters. The variance covariance
matrix of Y and X can be represented by the matrix below.(

Ψy ⊗ Σy Ψyx ⊗ Σyx

Ψxy ⊗ Σxy Ψx ⊗ Σx

)
(5)

This matrix has considerably less parameters, namely

q(q + 1) + p(p + 1) + 2pq + 3t(t + 1)

2
. (6)
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Existing Solution*

Suppose z1, ..., zN is a random sample of size N from the above
multivariate normal distribution in (??). SNV (2008) obtained
the maximum likelihood estimates of Σ and Ψ as follows. The
MLE of an unrestricted positive definite matrix Σ is given as

Σ̂ =

N∑
i=1

zicΨ̂−1z ′ic

tN
(7)

and similarly the MLE of an unrestricted matrix Ψ, except for
the restriction that ψtt = 1, is given by

Ψ̂ =

N∑
i=1

z ′icΣ̂−1zic

pN
(8)

and ψ̂tt = 1.
12 / 57



Canonical
Correlation
Analysis for
Longitudinal

Data

Raymond
McCollum

Advisor
Dayanand

Naik

Topics

CCA

Repeated CCA

Existing
Solution

Estimation

Hypothesis
Testing

Existing Solution*

Here

zi =


zi11 zi12 . . . zi1t
zi21 zi22 . . . zi2t

...
...

. . .
...

zip1 zip2 . . . zipt

 ,

zic = zi − z̄ , (9)

where,

z̄ =


z̄11 z̄12 . . . z̄1t

z̄21 z̄22 . . . z̄2t
...

...
. . .

...
z̄p1 z̄p2 . . . z̄pt

 .
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Existing Solution*

Σ̂−1 =


α11 α12 . . . α1p

α21 α22 . . . α2p
...

. . .
...

αp1 αp2 . . . αpp


The solution to the Ψ multiplies the zic matrix by the Σ inverse
estimate,

Ψ̂ =

N∑
i=1

z ′icΣ̂−1zic

Np
,
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Cross Correlation*

D =

(
Ψy ⊗ Σy Ψyx ⊗ Σyx

Ψxy ⊗ Σxy Ψx ⊗ Σx

)
.

(10)
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Cross Correlation*

Estimates are,

Ψ̂xy =

N∑
i=1

X ′icΣ̂+
xyYic

Rank(Σxy )N
(11)

Σ̂xy =

N∑
i=1

Y ′icΨ̂−1
xy Xic

Rank(Ψxy )N
. (12)
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Partitioning Σ*

Partitioning Σ will give

Σ =

(
Σyy Σyx

Σxy Σxx

)
.

This can be broken up to get

D =

[
Ψyy ⊗ Σyy Ψyx ⊗ Σyx

Ψxy ⊗ Σxy Ψxx ⊗ Σxx

]
.
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Transformation*

Transform the data to make the diagonals of the covariance
matrix the identity matrix.
Let [

(Ψ̂y ⊗ Σ̂y )−1/2 0

0′ (Ψ̂x ⊗ Σ̂x)−1/2

] [
Y
X

]
(13)
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Transformation*

The normal distribution was used to approximate the
asymptotic distribution. Similar to Tan (1973) work.

approximately

∼
N

[(
0
0

)(
I D
D ′ I

)]
(14)

D = (Ψ̂x ⊗ Σ̂x)−1/2C (Ψ̂y ⊗ Σ̂y )−1/2 (15)
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Transformation*

[
I D
D ′ I

]−1/2 [
(Ψ̂y ⊗ Σ̂y )−1/2 0

0′ (Ψ̂x ⊗ Σ̂x)−1/2

] [
Y
X

]
(16)

approximately

∼
N

[(
0
0

)(
I 0
0 I

)]
(17)

[
0 D
D ′ 0

] [
I D
D ′ I

]−1/2 [
(Ψ̂y ⊗ Σ̂y )−1/2 0

0′ (Ψ̂x ⊗ Σ̂x)−1/2

]
(18)

∗
[
Y
X

]
approximately

∼
N

[(
0
0

)(
DD ′ 0

0 D ′D

)]
(19)
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Unrestricted Covariance Matrix Ψ*

The solution gives,

̂DΨxyD
′
Ψxy
⊗ ̂DΣxyD

′
Σxy
. (20)

Spectral decomposition gives,

̂DΨxyD
′
Ψxy

= U∆2U ′ ⇒ (21)

For DΨxy positive definite we have the unique matrix (Harville
(1997)).

D̂Ψxy = U∆U ′ (22)
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Unrestricted Covariance Matrix Ψ*

CBaseΨxy
= A

1/2
Ψy

D̂ΨxyB
1/2
Ψy

(23)

Note that CBaseΨxy
can be a correlation matrix,

ĈΨxy = Diag(ĈBaseΨxy
)−1/2CBaseΨxy

Diag(ĈBaseΨxy
)−1/2 (24)

or CBaseΨxy
can use the AR(1) structure as noted earlier.

At this point we have a complete estimate for ĈΨxy to use to

estimate Σ̂xy

Σ̂xy =

N∑
i=1

Xic Ĉ
−1
Ψxy

Y ′ic

NRank(C )
(25)
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Estimation Results*

Sample Size Simulations
500 1000

Parameter Θ Θ̂ (E(Θ− Θ̂)2) |(Θ̂− Θ)|
Σy (11) 5.50000 5.49091 0.19355 0.00909
Σy (12) 3.17543 3.16755 0.16785 0.00788
Σy (13) 6.50000 6.48315 0.23614 0.01685
Σy (14) -0.50000 -0.50270 0.15944 0.00270
Σy (21) 3.17543 3.16691 0.19235 0.00852
Σy (22) 7.50000 7.48407 0.27176 0.01593
Σy (23) 0.35355 0.34927 0.14595 0.00428
Σy (31) 2.24537 2.23774 0.17092 0.00762
Σy (32) -0.35355 -0.35161 0.17407 0.00195
Σy (33) 6.25000 6.23379 0.23151 0.01621
ρy 0.20000 0.19939 0.01497 0.00061

Σx (11) 4.55000 4.53781 0.18379 0.01219
Σx (12) 0.44907 0.44612 0.09253 0.00296
Σx (21) 2.70000 2.69447 0.10096 0.00553
ρx 0.40000 0.39907 0.01952 0.00093
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Estimation Results*

Sample Size Simulations
500 1000

Parameter Θ Θ̂ (E(Θ− Θ̂)2) |(Θ̂− Θ)|
Σxy (11) 1.00416 1.00466 0.13027 0.00050
Σxy (12) 1.56525 1.56436 0.10695 0.00088
Σxy (13) 1.73925 1.73518 0.15310 0.00408
Σxy (14) 1.42009 1.41771 0.11413 0.00238
Σxy (21) -0.27386 -0.27980 0.14816 0.00594
Σxy (22) -0.22361 -0.22382 0.11304 0.00022
Σxy (23) 0.19365 0.18905 0.13287 0.00460
Σxy (24) 0.15811 0.15158 0.10581 0.00654
ρxy 0.30000 0.30217 0.04504 0.00217

Σ1xy (11) 1.00416 1.18419 0.45267 0.18003
Σ1xy (12) 1.56525 1.82970 0.61523 0.26446
Σ1xy (13) 1.73925 2.02502 0.67560 0.28576
Σ1xy (14) 1.42009 1.66430 0.57283 0.24420
Σ1xy (21) -0.27386 -0.33653 0.21721 0.06267
Σ1xy (22) -0.22361 -0.26029 0.16079 0.03669
Σ1xy (23) 0.19365 0.21089 0.16858 0.01724
Σ1xy (24) 0.15811 0.18202 0.14543 0.02391
ρ1xy 0.30000 0.34486 0.10577 0.04486
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Estimation Results*

Sample Size Simulations
50 1000

Parameter Θ Θ̂ (E(Θ− Θ̂)2) |(Θ̂− Θ)|
Σy (11) 5.50000 5.38572 0.63838 0.11428
Σy (12) 3.17543 3.12812 0.53214 0.04730
Σy (13) 6.50000 6.37219 0.75108 0.12781
Σy (14) -0.50000 -0.48519 0.52173 0.01481
Σy (21) 3.17543 3.10831 0.63379 0.06712
Σy (22) 7.50000 7.35267 0.87776 0.14734
Σy (23) 0.35355 0.35696 0.46468 0.00340
Σy (31) 2.24537 2.20256 0.55177 0.04281
Σy (32) -0.35355 -0.35449 0.55607 0.00094
Σy (33) 6.25000 6.12585 0.74061 0.12415
ρy 0.20000 0.19905 0.04838 0.00095

Σx (11) 4.55000 4.43166 0.56430 0.11834
Σx (12) 0.44907 0.44469 0.29620 0.00438
Σx (21) 2.70000 2.65309 0.32754 0.04691
ρx 0.40000 0.39930 0.06129 0.00070
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Estimation Results*

Sample Size Simulations Converge
50 1000

Parameter Θ Θ̂ (E(Θ− Θ̂)2) |(Θ̂− Θ)|
Σxy (11) 1.00416 0.99012 0.40499 0.01404
Σxy (12) 1.56525 1.55870 0.34521 0.00655
Σxy (13) 1.73925 1.70115 0.46706 0.03810
Σxy (14) 1.42009 1.41299 0.36314 0.00710
Σxy (21) -0.27386 -0.27898 0.48118 0.00512
Σxy (22) -0.22361 -0.21468 0.36631 0.00893
Σxy (23) 0.19365 0.19743 0.43212 0.00378
Σxy (24) 0.15811 0.17390 0.34203 0.01579
ρxy 0.30000 0.30405 0.07828 0.00405

Σ1xy (11) 1.00416 2.21826 4.54869 1.21410
Σ1xy (12) 1.56525 4.25959 10.03225 2.69434
Σ1xy (13) 1.73925 4.30226 9.20887 2.56301
Σ1xy (14) 1.42009 3.71180 8.74069 2.29170
Σ1xy (21) -0.27386 -0.67614 4.06503 0.40228
Σ1xy (22) -0.22361 -0.68435 4.28020 0.46074
Σ1xy (23) 0.19365 0.63663 3.26688 0.44298
Σ1xy (24) 0.15811 0.63454 3.27403 0.47643
ρ1xy 0.30000 0.46671 0.35035 0.16671
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Model II*

Model II allows a different time element correlation for each
partition. That is, the X values have their own time correlation
and the Y values have their own time correlation. The XY
cross correlation value have their own separate time correlation.
For example the time correlation for the X values at time one
and the X values at time two may be .1, the Y values time one
to time two correlation may be .3. The X at time one and Y at
time two may have a .2 correlation.(

Ψy ⊗ Σy Ψyx ⊗ Σyx

Ψxy ⊗ Σxy Ψx ⊗ Σx

)
(26)
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Model III*

The model can retain the correlation structure in the time
component of the Y values or the X values but not both. The
cross correlation time structure retains its time correlation
structure. (

Ψy ⊗ Σy Ψyx ⊗ Σyx

Ψxy ⊗ Σxy Ix ⊗ Σx

)
(27)

or (
Iy ⊗ Σy Ψyx ⊗ Σyx

Ψxy ⊗ Σxy Ψx ⊗ Σx

)
(28)

Either the Y or the X variable can be correlated in time. Hence
the two equations 27 and 28 both have the same number of
parameters to estimate.

Parameters =
p(p + 1)

2
+

q(q + 1)

2
+ pq + 2 (29)
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Model IV*

This equation assumes the time correlation component is
constant across all data. The mechanisms that are occurring in
time play the same role in the X values, the Y values, and the
cross project of the two. The corresponding matrix is shown in
equation 30. (

Ψt ⊗ Σy Ψt ⊗ Σyx

Ψt ⊗ Σxy Ψt ⊗ Σx

)
(30)

In this model, all ρ parameters are equal.

ρx = ρy = ρxy (31)

Parameters =
p(p + 1)

2
+

q(q + 1)

2
+ pq + 1 (32)
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Model V*

The time correlation matrix Ψ equals the identity matrix
throughout all four partitions.(

Iy ⊗ Σy Iyx ⊗ Σyx

Ixy ⊗ Σxy Ix ⊗ Σx

)
(33)

Model 33 shows no covariance structure across time units. This
model assumes that what happens in time unit 1 does not
influence time unit 2 or later. This simple analysis may be what
a researcher will attempt when first faced with multivariate
time series data.
Model 33 has the least number of parameters that require
estimation.

Model 33 Parameters =
p(p + 1)

2
+

q(q + 1)

2
+ pq (34)
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Hypothesis Testing

Model I : completely unstructured covariance

Model II : Kronecker product covariance structure with
DC-8 and C-130 each having a different time correlation

Model III : Kronecker product covariance structure where
DC-8 or C-130 has no time correlation

Model IV : Kronecker product covariance where DC-8 and
C-130 have the same time correlation (A true maximum
likelihood solution exists under transformation)

Model V : Kronecker product covariance where there is no
time correlation (A true maximum likelihood solution
exists under transformation)
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Hypothesis Testing*

The log likelihood ratio test was used to determine if the model
should be increased in complexity. Note that the data is not
normally distributed but this model was used as an approximate
test statistics.

f (Z , µ,Σ) =
1

2π(p+q)t/2|Σ|1/2
exp
−(Z′)Σ−1(Z)

2
(35)

Z =

[
Y
X

]
(36)

The log likelihood ratio test was used as a test statistic.

−2(logf (Z , 0,ΣHo )− logf (Z , 0,ΣHa)) ∼ χ2
df (37)
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Hypothesis Testing*

Model Sample Size I vs II II vs III III vs V II vs IV IV vs V
II 500 .115 1.000 1.000 .782 1.000
II 350 .097 1.000 1.000 .290 1.000
II 200 .147 1.000 .999 .011 1.000
II 100 * 1.000 .993 0 1.000
II 50 * .975 .982 0 1.000
III 500 .137 .109 1.000 1.000 1.000
III 350 .114 .105 1.000 1.000 1.000
III 200 .157 .094 1.000 .994 1.000
III 100 * .084 1.000 .340 .965
III 50 * .063 .996 .005 .732

Table: Rejection rates for 1000 samples

33 / 57



Canonical
Correlation
Analysis for
Longitudinal

Data

Raymond
McCollum

Advisor
Dayanand

Naik

Topics

CCA

Repeated CCA

Existing
Solution

Estimation

Hypothesis
Testing

Hypothesis Testing*

Model Sample Size I vs II II vs III III vs V II vs IV IV vs V
IV 500 .113 1.000 .917 0 1.000
IV 350 .145 1.000 .923 0 1.000
IV 200 .145 1.000 .928 0 1.000
IV 100 * 1000 .889 0 1.000
IV 50 * 1000 .775 0 1.000
V 500 .122 .099 .021 0 .032
V 350 .091 .089 .015 0 .018
V 200 .142 .095 .020 0 .053
V 100 * .080 .015 0 .038
V 50 * .051 .023 0 .027

Table: Rejection rates for 1000 samples
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Bootstrapping*

The hypothesis tests above showed a higher rejection rate than the
expected .05. This was most likely due to differences between the
MLE and the estimates. Bootstrapping was used to create tests that
give more accurate rejection probabilities. Parametric bootstrapping
stimulations based on (Efron and Tibshirani(1993)) theory were used
to create hypothesis tests. For each possible covariance structure, a
set of 100 simulations of 100 bootstrap samples each were used.
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Bootstrap samples*

Initial data set.


y111 . . . yp11 . . . y1t1 . . . ypt1 x111 . . . xq11 . . . x1t1 . . . xqt1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
y11n . . . yp1n . . . y1tn . . . yptn x11n . . . xq1n . . . x1tn . . . xqtn


′

(38)

The likelihood ratio statistics was used as a test statistic for
the bootstrap.

λ = −2(log(L(Y ,X , µ,ΣHo ))− log(L(Y ,X , µ,ΣHa).)
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Bootstrapping*

The initial data was used to generate a bootstrap estimate of the
variance covariance matrix

Φ =

(
Ψ̂y ⊗ Σ̂y Ψ̂yx ⊗ Σ̂yx

Ψ̂xy ⊗ Σ̂xy Ψ̂x ⊗ Σ̂x

)
.

The bootstrap variance covariance matrix was used to generate B
bootstrap samples.

y∗
1 , y

∗
2 , . . . , y

∗
b

x∗1 , x
∗
2 , . . . , x

∗
b
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Bootstrapping*

Each bootstrap sample was used to create an estimate of the sample
variance covariance matrix.

Φ∗ =

(
Ψ̂∗

y ⊗ Σ̂∗
y Ψ̂∗

yx ⊗ Σ̂∗
yx

Ψ̂∗
xy ⊗ Σ̂∗

xy Ψ̂∗
x ⊗ Σ̂∗

x

)
.

Each bootstrap sample was also used to get a test statistics.

λ∗b = −2(log(L(Y ,X , µ,ΣH∗0
))− log(L(Y ,X , µ,ΣH∗

(1)
))).

λ was compared to the vector of λ∗bs to get an estimate of the
p-value.
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Bootstrapping Hypothesis Tests*

Model Sample Size I vs II II vs III III vs V II vs IV IV vs V
II 500 .08 1.0 1.0 1.0 1.00
II 350 .07 1.0 1.0 .99 1.00
II 200 .06 1.0 1.0 .98 1.00
II 100 * .92 1.0 .92 1.00
II 50 * .95 .96 .66 1.00
III 500 .06 .05 1.00 1.00 1.00
III 350 .1 .06 1.00 1.00 1.00
III 200 .05 .01 1.00 1.00 1.00
III 100 * .06 1.00 1.00 .96
III 50 * .02 1.00 1.00 .77

Table: Rejection rates for 100 samples, Null Hypothesis II
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Bootstrapping Hypothesis Tests*

Model Sample Size I vs II II vs III III vs V II vs IV IV vs V
IV 500 .05 1.00 .94 .04 1.0
IV 350 .1 1.00 .89 .07 1.0
IV 200 .03 1.00 .94 .06 1.0
IV 100 * 1.00 .88 .06 1.0
IV 50 * 1.00 .88 .04 1.0
V 500 .05 .08 .1 .1 .07
V 350 .10 .08 .03 .07 .07
V 200 .03 .08 .09 .11 .06
V 100 * .05 .08 .1 .04
V 50 * .05 .05 .06 .06

Table: Rejection rates for 100 samples, Null Hypothesis II
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INTEX*

The Intercontinental Chemical Transport Experiment
(INTEX)

”INTEX (http://cloud1.arc.nasa.gov) is a two phase
experiment that aims to understand the transport and
transformation of gases and aerosols on
transcontinental/intercontinental scales and assess their
impact on air quality and climate.”

The experiment was performed in the spring of 2006.

The purpose of the project was to ”Quantify the outflow
and evolution of gases and aerosols from the Mexico City
Megaplex”.
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Analysis Air Tracks*
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INTEX*

Multiple air frames will measure air and pollutants along
the Mexican Coast.

NASA DC-8 flown out o Houston, Texas

NSF/NCAR C-130 from Tampico, Mexico

Air frames will travel in close proximity.

Data from multiple gasses will be recorded for each plane
and compared in an effort to calibrate the instrumentation.
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INTEX*

Three pollutants of interest for this study were H2O Water
CO Carbon Monoxide O3 Ozone.

Data were recorded over time and the three gasses were
thought to be correlated.

Sensors give different readings and neither sensor is
considered to be the ”correct” answer.

The objective is to study the covariance structure of
sensor measurement on both airframes. The structure will
reveal how each plane’s sensor readings vary with time.
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Altitude and Molecule Measurements*

Altitude O3 DC-8 CO DC-8 H20 DC-8 O3 C-130 CO C-130 H2O C-130
313 35.0317 112.93 2.295522603 33.2 103.3845 3.90521

3992.3 81.85337 222.59 14.55818318 85.2 211.3836 16.5065

Table: Altitude and Molecule Measurements before scaling

Units for CO and O3 are ppbv: Number of molecules per cubic centimeter over number of air molecules per
cubic centimeter. Units for H20 are g/kg: grams of water vapor per kg dry air.
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Altitude and Molecule Measurements*

Figure: INTEX-B Airtracks Altitude
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Data Hypothesis Test Results*

Hypothesis Test Observed P-value

II =⇒ III .00

II =⇒ IV .23
IV =⇒ V .007

Table: Testing Results for INTEX data
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Variance Covariance Matrices*

ΣyDC-8 O3 ΣyDC-8 CO ΣyDC-8 H20

0.2119047 -0.011894 0.0049709
-0.011894 0.5828666 -0.01056
0.0049709 -0.01056 0.0053191

Table: Covariance IV Estimates for NASA Σy

ΣxC-130 O3 Σx C-130 CO ΣxC-130 H20

0.2359842 0.1215785 0.0014622
0.1215785 7.2159748 0.0053734
0.0014622 0.0053734 0.011764

Table: Covariance IV Estimates for NASA Σx
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Variance Covariance Matrices*

Σxy O3 Σxy CO Σxy H20

0.0371183 -0.056899 -0.00096
0.0284117 -0.0285 0.002261
-0.000511 0.0094509 6.8809E-6

Table: Covariance IV Estimates for NASA Σxy

Ψ O3 Ψ CO Ψ H20

1 -0.131819 0.0173763
-0.131819 1 -0.131819
0.0173763 -0.131819 1

Table: Covariance IV Estimates for NASA Ψ
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Canonical Correlations*

Canonical Correlation Correlation Cumulative Percentage

1st Canonical Correlation 0.201539 .726285
2nd Canonical Correlation 0.046524 .893943
3rd Canonical Correlation 0.02943 1

Table: Canonical Correlations Within Each Time Period
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Canonical Coefficients*

1st Variable 2nd Variable 3rd Variable

Ozone DC-8 0.9296 -0.1022 -0.3845
Carbon M. DC-8 0.3716 0.6197 0.7178

Water DC- 8 -0.2272 0.9193 -0.4032

Table: Standardized Canonical Coefficients DC-8

1st Variable 2nd Variable 3rd Variable

Ozone C-130 0.9602 0.2816 -0.0899
Carbon M. C-130 -0.3806 0.8357 -0.4072

Water C-130 -0.0589 0.3999 0.9152

Table: Standardized Canonical Coefficients C-130
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Conclusion*

Repeated CCA is a method that allows the comparison of
multiple random variables to each other.

The procedure is distribution independent and estimates
the the variance covariance.

The number of variables required to estimate variance
covariance matricies grows quickly.

Modeling the data struction in accordance with subject
matter expert knowledge reduces the data requirements.
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Structure 

  If this DOE stuff is so good … why do I 
struggle? 

  Outline of a story to convince our leaders 
  Equipping leaders with the right questions 

to ask 
  Summary & Questions 



Deming and the VP – May be 
Apocryphal, but True … 

"Learning is not compulsory . . . 
neither is survival.“ 

"It is not enough to do your best; 
you must know what to do, and 
then do your best." 

-- W. Edwards Deming 
October 14, 1900 – December 20, 1993 

If all this DOE Stuff is so good … 
why do I struggle? 



Product 
Life Cycle 
and Test 

Challenges 

Concept 

Product & 
Process Design 

Production 

Operations 

Sustainment 

Requirements - 
Quality Function 
Deployment (QFD) 

AoA -
Feasibility 
Studies 

Robust Product Design 

Product Optimization 

Serviceability 

Availability Maintainability 

Reliability 

Reliability and 
Sustainment Testing 

Design Variable 
Screening 

System of Systems 
Experiments 

Data Mining 

Measurement 
Systems 
Analysis 

Product 
Characterization 

Performance Mapping 

*

*

*

*

*

* *

**

* Examples just this conference 

*

*



Systems Engineering Employ Many 
Simulations of Reality 

  At each stage of development, we conduct experiments 
  Ultimately – how will this device function in service (combat)? 
  Simulations of combat differ in fidelity and cost 
  Differing goals (screen, optimize, characterize, reduce variance, robust 

design, trouble-shoot)  
  Same problems – distinguish truth from fiction: What matters? What 

doesn’t? 
4 



What are Statistically Designed 
Experiments? 

  Purposeful, systematic changes in the inputs in order to observe 
corresponding changes in the outputs 

  Results in a mathematical model that predicts system responses 
for specified factor settings 



Case DT/OT: B-1 Radar TLE 
Accuracy Characterization (2001) 

Problem: 
  Is B-1B APQ-164 monopulse SAR 

mode for targeting accurate enough for 
JDAM? 

  Are tail numbers similar?  Target 
types? 

  Bottom line: self-target JDAM? 
  7 sorties flown with mixed results 

-100’s of measurements “as available” 

DOE Approach: 
•  Variables include 

•  Side of A/C, angle off nose 
•  Range, type of target 
•  Two tail numbers 

•  Responses include TLE, mil error 
•  Compare to specified radar accuracy 
•  Single 2-ship sortie 

Results: Similar accuracy across volume, tail 
•  In work, but promising … Angular Error in Target Coordinates  

Le3 side  Right side 



Case: DT HWIL GWEF Large Aircraft 
IR Hit Point Prediction  

Test Objective: 
  IR man-portable SAMs pose threat to 

large aircraft in current  AOR 
  Dept Homeland Security desired Hit 

point prediction for a range of threats 
needed to assess vulnerabilities  

  Solution was HWIL study at GWEF 
(ongoing) 

DOE Approach: 
•  Aspect – 0-180 degees, 7each 
•  Elevation – Lo,Mid,Hi, 3 each 
•  Profiles – Takeoff, Landing, 2 each 
•  Altitudes – 800, 1200, 2 each 

•  Including threat – 588 cases  
•  With usual reps nearly 10,000 runs 
•  DOE controls replication to min needed 

Results: 
•  Revealed unexpected hit point behavior 
•  Process highly interactive (rare 4-way) 
•  Process quite nonlinear w/ 3rd order 

curves 
•  Reduced runs required 80% over past 
•  Possible reduction of another order of 

magnitude to 500-800 runs 

IR Missile C‐5 Damage 



Case 11: CFD for NASA CEV 
Test Objective: 
  Select geometries to minimize total drag 

in ascent to orbit for NASA’s new Crew 
Exploration Vehicle (CEV) 

  Experts identified 7 geometric factors to 
explore including nose shape 

  Down-selected parameters further 
refined in following wind tunnel 
experiments 

DOE Approach: 
•  Two designs – with 5 and 7 factors to vary 
•  Covered elliptic and conic nose to 

understand factor contributions 
•  Both designs were first order polynomials 

with ability to detect nonlinearities 
•  Designs also included additional 

confirmation points to confirm the empirical 
math model in the test envelope  

Results: 
•  Original CFD study 

envisioned 1556 
runs 

•  DOE optimized 
parameters in 84 
runs – 95%! 

•  ID’d key interaction 
driving drag 

Source:  A Parametric Geometry CFD Study Utilizing DOE Ray D. Rhew, Peter A. Parker, NASA Langley Research Center, AIAA 2007 1616 



So … why aren’t all experiments 
well-designed? 

  Summary of three projects: 
  1 mission when 7 couldn’t answer the question 
  Cut runs from 5000 replicates to 500 
  CFD Trials reduced from 1920 to 84 

  Many such outstanding success stories 
  We know how to teach & mentor practitioners 
  Experts can be hired and groomed 
  We have plenty of good software tools, texts 



“We have met the enemy and he is … Us!   
-- Pogo circa 1971 

  It is us… 
  A Job Story circa 

1990-2000 
  “Leadership From Below” 

-- Col T.S. Hutto 1933-1998 

“But how can people call on him if they have not believed in 
him? How can they believe in him if they have not heard his 
message? How can they hear if no one tells the Good 
News? “    -- Paul (0063, Romans 10.14) 
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"Because management deals mostly with the status quo and leadership deals 
mostly with change, in the next century we are going to have to try to become 
much more skilled at creating leaders."  --  Dr. John Kotter 

Five Steps to Implementation 

2. Short-Term  
Wins 

I.  Leadership --Why DOE? 

II.  Technical Continuity 

III.  Communicating Change 

IV.  Change Wing Structures 

1.  Foundations 

3. Train 4. Mentor 

5. Policy Entire process m
ust be led 

Management consists of 
doing things right; 

leadership consists of 
doing the right things. 

‐‐ Peter Drucker 



Telling the “Why?” Story … It is not easy 
or guaranteed of success 

DOE Leaders-12 

Track record: 
6-3-5-2 



Why DOE? One Slide… 
DOE Gives Scientific Answers to Four Fundamental Test 

Challenges 

Four Challenges faced by any test 
1.  How many? Depth of Test – effect of test size on uncertainty 
2.  Which Points? Breadth of Testing – spanning the vast 

employment battlespace 
3.  How Execute? Order of Testing – insurance against “unknown-

unknowns” 
4.  What Conclusions? Test Analysis – drawing objective, scientific 

conclusions while controlling noise    

DOE effectively addresses 
 all these challenges! 

In our short time today, 
address primarily #1 and #2. 

13 
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Question #1 … How Many? 

  In all our testing – we reach into 
the bowl (reality) and draw a 
sample of JPADS performance 

  Consider an “80% JPADS” 
  Suppose a required 80% P(Arrival)    
  Is the Concept version acceptable? 

  We don’t know in advance which 
bowl God hands us … 
  The one where the system works or, 
  The one where the system doesn’t  

The central 
challenge of 
test – what’s 
in the bowl? 



Example: 
Precision Air Drop System 

  Just when you think of a 
good class example – they 
are already building it! 

  46 TS – 46 TW Testing 
JPADS 15 

The dilemma for airdropping supplies has always been a stark one. 
High-altitude airdrops often go badly astray and become useless or 
even counter-productive. Low-level paradrops face significant dangers 
from enemy fire, and reduce delivery range. Can this dilemma be 
broken?  
A new advanced concept technology demonstration shows promise, 
and is being pursued by U.S. Joint Forces Command (USJFCOM), 
the U.S. Army Soldier Systems Center at Natick, the U.S. Air Force Air 
Mobility Command (USAF AMC), the U.S. Army Project Manager 
Force Sustainment and Support, and industry. The idea? Use the 
same GPS-guidance that enables precision strikes from 
JDAM bombs, coupled with software that acts as a flight control 
system for parachutes. JPADS (the Joint Precision Air-Drop System) 
has been combat-tested successfully in Iraq and Afghanistan, and 
appears to be moving beyond the test stage in the USA… and 
elsewhere. 

Requirements: 
Probability of Arrival 
Unit Cost $XXXX 
Damage to payload 
Payload 
Accuracy 
Time on target 
Reliability … 

Capability: 
Assured SOF re-supply of material 
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Start -- Blank Sheet of Paper: How 
Many? 

  Let’s draw a sample of _n_ drops 
  How many is enough to get it right? 

  3 – because that’s how much $/time we have 
  8 – because I’m an 8-guy 
  10 – because I’m challenged by fractions 
  30 – because something good happens at 30! 

  Let’s start with 10 and see … 

=> Switch to Excel File – JPADS Pancake.xls 



Embedded Excel Simulation to 
Address “How Many?” 

17 
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We seek to balance our chance of 
(Type I and II) errors 

  Combining, we can trade one 
error for other (α for β)


  We can also increase sample 
size to decrease our risks in 
testing 

  These statements not opinion 
–mathematical fact and an 
inescapable challenge in 
testing 

  There are two other ways out 
… factorial designs and real-
valued MOPs 

Enough to Get It Right:  Confidence in stating no faults; Power to 
detect important differences 

Wrong 
65% of 
time 

Wrong 
10% of 
time 

JPADS 

JPADS P(A) 
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Question 2:  Which Points? How 
Designed Experiments Solve This 

Designed Experiment (n).  Purposeful control 
of the inputs (factors) in such a way as to 
deduce their relationships (if any) with the 
output (responses). 

Test JPADS 
Payload Arrival 

JPADS Concept A B C … 

Tgt Sensor (TP, Radar) 

Payload Type  
Platform (C-130, C-117) 

Hits/misses 

RMS Trajectory Dev 

P(payload damage) 

Miss distance (m) 

Statistician G.E.P Box  said … 
“All math models are false …but some are useful.” 

“All experiments are designed … most, poorly.” 
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Battlespace Conditions for  
JPADS Case 

  Systems Engineering Question:  Does JPADS 
perform at required capability level across the 
planned battlespace? 

12 Dimensions - 
Obviously a 
large test 
envelope … how 
to search it? 



Spanning the Battlespace –  
Traditional Test Designs 

OFAT Typical Use Cases 

Change variables together: 
best, worst, nominal 

Mach 

Altitude 

Mach 

Altitude 

Mach 

Altitude 

And … the always 
popular DWWDLT* 

* Do What We Did Last Time 



Spanning the Battlespace - DOE 

Mach 

Altitude 

Mach 

Altitude 

Mach 

Altitude 

Factorial Response 
Surface 

Optimal 
single point 

replicate 



More Variables – DOE Factorials 

Mach 

Altitude 

Factorials 

Mach 

Altitude 

Range 

Mach 

Altitude Range 

Weapon – type A Weapon – type B 

4-D 

3-D 
2-D 



Even More Variables (here – 6) 

D 
– + 

E 

– 

+ 

F 
+ – 

A 

B 
C 



Efficiencies in Test - Fractions 

D 
– + 

E 

– 

+ 

F 
+ – 

A 

B 
C 



Problem context guides choice of designs 
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Constraints/Complexity of Surface 

Classical 
Factorials 

Fractional 
Factorial 
Designs 

Optimal 
Designs 

Space-
Filling 
Designs 

Response 
Surface 
Method 
Designs 



We have a wide menu of design 
choices with DOE 

Optimal Designs 

Fractional  
Factorials 

Space Filling 

Response Surface 
Full Factorials 

JMP Software DOE Menu 
27 
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Which Points to Span the Relevant 
Battlespace? 

  Factorial (crossed) designs let 
us learn more from the same 
number of assets 

  We can also use Factorials to 
reduce assets while 
maintaining confidence and 
power 

  Or we can combine the two 

  How to support such an 
amazing claim? 

4 reps 1 var 
2 reps 2 vars 

½ rep 4 vars 

All four Designs share the same 
power and confidence 

1 reps 3 vars 

=> Switch to Excel File – JPADS Pancake.xls 



Equal Power? A preposterous claim … 
how to justify it? 

  Consider again our 
JPADS problem 
across 2 dimensions 

  13 wind speeds x 5 
altitudes = 65 cases x 
10 reps each = 650 
trials 

  Surely this will solve 
our problem with 
noise? 

29 

It will not … we have 65 
separate 10-sample trials 



But, discard 9/10th of trials … strap 1/10th 
into a math model 

30 

DOE math model straps all the physics together: 
 -  reducing samples per condition by 90% while 
 -  increasing our prediction accuracy 50% 
Note:  this speaks to the method of analysis (Challenge #4.) 



Test as Science vs. Art:  Experimental Design 
Test Process is Well‐Defined 

Test Matrix Randomize & Block -> 
Results and Analysis 

Planning: Factors  
Desirable and Nuisance 

Desired Factors  
and Responses Design Points 

Model Build 
Discovery, Understanding 
Prediction, Re-design 

31 
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It applies to our tests: DOE in 
50+ operations over 20 years 

  IR Sensor Predictions 
  Ballistics 6 DOF Initial Conditions  
  Wind Tunnel fuze characteristics 
  Camouflaged Target JT&E ($30M) 
  AC-130 40/105mm gunfire CEP evals 
  AMRAAM  HWIL test facility validation 
  60+ ECM development + RWR tests 
  GWEF Maverick sensor upgrades 
  30mm Ammo over-age LAT testing 
  Contact lens plastic injection molding 
  30mm gun DU/HEI accuracy (A-10C) 
  GWEF ManPad Hit-point prediction 
  AIM-9X Simulation Validation 
  Link 16 and VHF/UHF/HF Comm tests 
  TF radar flight control system gain opt 
  New FCS software to cut C-17 PIO 
  AIM-9X+JHMCS Tactics Development 
  MAU 169/209 LGB fly-off and eval 

  Characterizing Seek Eagle Ejector Racks 
  SFW altimeter false alarm trouble-shoot 
  TMD safety lanyard flight envelope 
  Penetrator & reactive frag design 
  F-15C/F-15E Suite 4 + Suite 5 OFPs 
  PLAID Performance Characterization  
  JDAM, LGB weapons accuracy testing 
  Best Autonomous seeker algorithm 
  SAM Validation versus Flight Test 
  ECM development ground mounts (10’s) 
  AGM-130 Improved Data Link HF Test 
  TPS A-G WiFi characterization 
  MC/EC-130 flare decoy characterization 
  SAM simulation validation vs. live-fly 
  Targeting Pod TLE estimates 
  Chem CCA process characterization 
  Medical Oxy Concentration T&E 
  Multi-MDS Link 16 and Rover video test 



Adopt a Policy of Well-Designed Tests 



Checklist: Fruits of Well-
Designed Tests 

 Specify Goal/Objective 
 List Quantitative 

Responses 
 List factors/levels & how to 

control in test 
 Strategy to place Points 
 Compute Confidence/

Power 



What you measure gets done …  
Sample Unit Quarterly Metrics 

Basic Training 
DOE Aware 

The Deeds  
% Designed 

The Doers  



Assign 

The Goal… 

Correct Test  
Outcomes: 

Find 
Problems or 

Pass 

Superbly 
Designed Tests 

Grads 

Experts 
Mentor 

CT 

Dev’p  Courses 

External 
Hires 

Seasoned DOE 
PracNNoners 

Core Sqdn 
Test Projects 

Work 

Report 
Metrics 

Leaders 

Hire 

Teach ExecuNves 

Experts 

Students 

Select 

Area to work 

Customers Educate 

Teach Doers 

Infrastructure 

The Work 

Marketing 

Control 

The Fruit 



In Memorium R.A. Fisher  
 Principles of DOE 

 <Orthogonality>  
 Randomization 
 Replication 
 Local Control of Error 

“To call in the statistician after 
the experiment is  . . .  asking 
him to perform a postmortem 
examination: he may be able to 
say what the experiment died 
of.” 

Address to Indian Statistical 
Congress, 1938. 

“No aphorism is more frequently repeated in 
connection with field trials, than that we must ask 
Nature few questions, or, ideally, one question at a 
time. The writer is convinced that this view is 
wholly mistaken. Nature, he suggests, will best 
respond to a logical and carefully thought out 
questionnaire; indeed, if we ask her a single 
question, she will often refuse to answer until some 
other topic has been discussed." R. A. Fisher 



We Have Great Answers to Key 
Questions. 
  It’s the way we build better tests 
  N, points, order, conclusions? 
  Uniquely answers deep and broad 

challenges 
  Quantify the test risks DOD incurs 
  Less-experienced testers can 

reliably succeed 
  Small town Ga quarterback… 
  A final challenge … Lead us! 

So, What’s the Good News? 

George Harrison, MGen 
USAF (ret) 



DOE: The Science of Test 

Questions? 
39 



Embedding DOE in Military Testing
One Organization’s Roadmap

presented to:
2011 NASA Statistical Engineering Symposium

May 2011

Jim Simpson, 53d Wing – Greg Hutto 46 Test Wing  – Alex Sewell 53d Wing
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53d Wing

Mission: Develop, test and evaluate advanced weapons, 
systems and tactics to perfect the lethality, survivability, 

and sustainability of our nation’s combat forces

2000 Professionals consisting of…

 550 Officers

 650 Enlisted

 450 Civilians 

 350 Contractors

19 Locations



Electronic 
Warfare

Weapons 
Evaluation

Test &
Evaluation

Test 
Management

53d Wing
Analysts and Test Engineers

48797

38201650

Analysts
71

Test Engineers
124

53d Wing



What is Your Dream?

“Be Careful What you Ask for . . .”  Kevin Burns, Ops Test, Tech Advisor

4

DOE is Policy
In DoD



Changing a Culture

5
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Contrast Traditional Methods …

Case Configuration Outcome
1 Good
2 Good
3 OK
4 Good
5 Good

Good to go! OR

One Factor-at-a-Time

Case A B C
1 1 0 0
2 2 0 0
3 3 0 0
4 4 0 0
5 0 1 0
6 0 2 0
7 0 3 0
8 0 4 0
9 0 0 1
10 0 0 2
11 0 0 3
... ... ... ...

Cases

Actual Deviation
from SCP

%

Effect Graph

SCP

0.2

2.8

5.5

8.1

10.7

13.4

16.0

300 500

Actual Deviation
from SCP

%

Effect Graph

SCP

0.2

2.8

5.5

8.1

10.7

13.4

16.0

300 500



DOEAnalyze
Statistically to Model 

Performance
Model, Predictions, Bounds

Plan
Sequentially for Discovery 

Factors, Responses and Levels

Design
With Type I Risk and Power to 

Span the Battlespace
N, a, Power, Test Matrices 

Execute
to Control Uncertainty

Randomize, Block, Replicate

DOE Process
Metrics of Note



Questions in Testing

Four Challenges faced by any test
1. How Many?  A:  Sufficient samples to control our twin errors –

false positives & negatives
2. Which Points and What’s Good?  A: Span the battle-space with 

orthogonal run matrices using continuous measures tied to the 
test objectives 

3. How Execute?  A: Randomize and block runs to exclude effects 
of the lurking, uncontrollable nuisance variation

4. What Conclusions?  A:  Build math-models of input/output 
relations, quantifying noise, controlling error 

Inputs
(X’s)

Noise

Outputs
(Y’s)

Noise

PROCESS
Design of Experiments effectively 

addresses all these challenges!



Culture Change Across Units

9

Sec 
Defense

AF Chief

AFOTEC

Dets

AMC ACC

53d W

AFSOC

18 FTS

GSC AFSPC

AF/TE

Dir, Ops 
Test

Sec 
Defense

AF Chief

AFMC

AEDC

704 TG

AAC

46 TW

AFFTC

412 TW

AF/TE

Dir, Dev 
Test

Operational Test Developmental Test

Within UnitsWithin Units

Across Test 
& Evalution



Organization Change Pieces 
Move into Place Simultaneously

Test Science
Training

Projects, Mentor and 
Grow Practitioners

Research and 
Graduate Education

Hire and Place
Experts

Lead, Metrics, 
Accountability, 

Policy

Test Science
Training

Lead, Metrics, 
Accountability, 

Policy

Projects, Mentor and 
Grow Practitioners

Research and 
Graduate Education

Hire and Place
Experts

• Requires integrated effort with emphasis on each piece 
to pull it all together to affect the way we test



Science of Test 
Steps to Implementation within Unit

2. Short-Term 
Wins

I.   Leadership --Why DOE?

II.  Technical Continuity

III.  Process Improvement

IV.  Change Org Structures

5. Standards

4. Mentor3. Train

1.  Foundations



Leading the Science of Test 
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I.   Leadership --Why DOE?

II.  Technical Continuity 1.  Foundations
III.  Process Improvement

IV.  Change Org Structures

 Stay tuned for the next talk …



Training our Total Test Team

 Leadership, Support and Operator Series
 DOE Executive Interview (1-2 hour)
 DOE for Leaders, Aircrew (half day)
 Intro to Design of Experiments (2 days)
 DOE Foundations (1 week)

 Analyst and Test Engineer Practitioner Series
 Each 1-week course uses Discussion-Seatwork-Projects
 DOE 0 – DOE Foundations for Science of Test
 DOE I – Design and Analysis of Factorial and Fractionated 

Designs
 DOE II – Response Surface Methods, Optimal 

Designs, Split Plots, Analysis of Ugly Data

Launch
Angle

Number of 
Elastomers

Pull Back
Angle

Type of projectile
S

P

Target
Range

13

3. Train



Software for Practitioners

 Design Expert – software solely for design of experiments
 Keeps the analyst focused on DOE procedure
 Warns when going wayward
 Used in DOE 0, I, II and in-part III

 JMP – general purpose statistical software
 Industry leader, affordable, requires learning curve
 Best for our advanced users and needs
 For DOE III and difficult problems

 Minitab – general purpose
 Interface similar to Excel, user friendly
 DOE emphasis
 Split-plot capable



Growing & Mentoring 
Practitioners

Practitioner* -- (prak-tish-un-ur) n.  1.  One who practices 
an occupation, method or technique. 

 Various practitioner levels – requires experience
 OA – Initial Qual, Experienced, Instructor
 TE – Initial Qual, Experienced

 Include re-qualification
15

4. Mentor



Long Term Solution
Leadership: Making Changes Endure

16

DOT&E, DDT&E and Service TE Policy Providing Leadership
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Policy/Guidance Accountability/Metrics 

5. Standards
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Defining What We Do
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What’s in a Name?

 DOE or even Design of Experiments has downside
 DOE – Energy, Education …?

 We already design experiments
 We test, we don’t experiment

 It isn’t just DOE, we need a supporting cast of methods

 Label alternatives
 Operations Analysis, Industrial Statistics
 Statistical and Probabilistic DOE
 Statistically Defensible Test
 Scientific Test and Evaluation Design
 Test Science or Science of Test
 Statistical Engineering or Quality Engineering

18



One Term for All Test Science

 DOE is used for planning, design, execution and analysis
 DOE uses statistical, probabilistic, and mathematical 

(including operations research) methods
 DOE encompasses the entire history of design and 

statistical techniques and methods peer reviewed and 
demonstrated effective

 DOE is relevant to all types of testing: developmental and 
operational, deterministic and high-noise systems, for all 
system complexities

 DOE is not the solution for one-shot proof of concept or 
demonstrations

19



DOE Evolution

20

DOE

Foundations
(1920-1950)

ANOVA 
analysis

Factorial

Fractional 
Factorial

Industrial
(1950-1980)

Response 
Surfaces

Robust 
Design

Mixtures

Computer
Generation
(1980-2000)

Optimal 
Designs

D-optimal

I-optimal

Mixed Models

Multiple 
Response

Solution 
Diversity
(2000- )

Split Plots

Factor 
Covering

Statistical 
Learning

Skewed Data

Data 
Mining

Semi-
parametric

Partition 
trees

Computer 
Experiments

DOE for 
Reliability

Many of these 
cross-pollinated 

from other 
disciplines 
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Necessary Tools and Concepts
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CV-22 TF Flight Test

INPUTS
(Factors)

OUTPUTS
(Responses)

PROCESS:

TF / TA Radar 
Performance

Gross Weight
Radar Measurement

Noise

Airspeed

Nacelle

Set Clearance Plane

Turn Rate

Crossing Angle
Ride Mode

Pilot Rating

Set Clx Plane Deviation

Terrain Type

 Responses Factorsf  

Consider the possible effects of three variables: Airspeed, Turn Rate, and Ride



Risks (a and b) Reviewed

23 23

A: Airspeed

B: Turn

C: Ride

Test Factors Error

Truth Model: Response = Ride + Turn

Hypotheses

H0: Airspeed has no effect
H1:  Airspeed matters
H0: Turn has no effect
H1:  Turn matters
H0: Ride has no effect
H1:  Ride matters

Possible Conclusion

Airspeed matters

Turn matters

Ride has no effect

a

None, 1-b

b

* Bold Blue reflects the truth



Power Analysis Sequence

DOE I S1-24

1-b
N

a
d
s

k 
dfModel

 determined in planning
 based on model order

 set by allowable risk
 decided by expert
 historical data

 Solve and iterate



General Factorial
3x3x2 design

2-level Factorial
23 design

Fractional Factorial
23-1  design

Response Surface
Central Composite design

Classic Experimental Designs



Possible 
Strategies for 

Follow-Up 
Experimentation 

Following a 
Fractional 
Factorial 
Design

Adapted from Box, GEP (1992-1993), “Sequential 

Experimentation and Sequential Assembly of 
Designs,” Quality Engineering, Vol 5., No. 2, pp., 

321-330.



Designs Support the Model

Slant Range

Look down angle

-

- 



Design-Expert® Software

Miss Distance
Design points above predicted value
Design points below predicted value
61

5

X1 = A: Range
X2 = B: Angle

5.00  

10.00  

15.00  

20.00  

25.00  

  20.00

  35.00

  50.00

  65.00

  80.00

5  

19  

33  

47  

61  

  M
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s 
D
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ta
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e 

 

  A: Range  

  B: Angle  

Aileron Deflection

Angle of 
Attack

-

- 



Design-Expert® Software

Cm (pitch mom)
Design points above predicted value
Design points below predicted value
0.0611074

-0.0831574

X1 = A: Alpha
X2 = D: Ail

Actual Factors
B: Psi = 0.00
C: Canard = 0.00
E: Rudder = 0.00

  12.00

  16.00

  20.00

  24.00

  28.00

-30.00  

-15.00  

0.00  

15.00  

30.00  

0.02  

0.02675  

0.0335  

0.04025  

0.047  

  C
m

 (p
itc

h 
m

om
)  

  A: Alpha    D: Ail  

Miss 
Distance

Pitching 
Moment

Look down 
angle

Slant 
Range

Angle of 
Attack

Aileron 
Deflection

a)

b)



Standard Modeling
Least Squares Regression

2 2
0 1 1 2 2 12 1 2 11 1 22 2y x x x x x xb b b b b b       

28

Quantitative
Continuous

Quantitative
Continuous

Linear in parameters

Normally distributed
Independent

Homogeneous variance
Single error componentLow correlation

Run A B C

1

2

3

4

5

Void of 
outliers, leverage points



2nd Order Designs

Attributes
Replication

2nd order design

Nearly Orthogonal

Target  Prediction and 
Coefficient Variance

Efficient runs for k < 7

2
0

1 1

k k

i i ij i j ii i

i i j i

Y x x x xb b b b 
  

      

Attributes
All effects for general 
model

Pure error + LOF

Nearly Independent b
estimates

Design

Model

Assumptions
Randomized

Numeric or 
Categorical

Mostly Numeric

> 2 level

Assumptions
Errors NID (0, s2)

Model is adequate

Y well behaved



Split-Plot Designs

Attributes
Replication

Orthogonal

0
1

k

i i ij i j

i i j

Y x x xb b b d 
 

     

Attributes
All effects of interest

Limited WP error df

Independent b
estimates

Design

Model

Assumptions
Hard to Change 
Factors

Numeric or 
Categorical

Assumptions
Two Independent Error
Terms, both NID (0, s2)

Model is adequate

Y well behaved

- D  +
+
C
-

- - A           +

+

B

-

WP error
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Other Methods
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Modeling Alternatives

| Petal.L<2.45

Petal.W<1.75

Petal.L<4.95

Setosa

Versicolor Virginica
Virginica

Tree-based Methods

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0

0.5

1

1.5

X2

Response Surface of Major Minor Function

X1

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-0.5

0

0.5

1

1.5

X2

RSM

X1

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-0.5

0

0.5

1

1.5

X2

Kriging

X1

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

-0.5

0

0.5

1

1.5

X2

MARS

X1

Nonlinear Modeling

Truth

Kriging MARS

RSM

Generalized Linear Models



Software Testing Solutions

System

1
1a

1b 1b.1 1b.1.1

2

2a

2b

2c

2c.2

2c.3

2c.4

 How to spread out test resources effectively/efficiently
 How to test configurations effectively/efficiently
 How to fill a space effectively/efficiently

Test 
resources

Objective 
2

Objective 
1

Objective 
3

%

%
%

Decision Analysis Factor Covering Arrays

Space Filling



Reliability
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Operating Characteristic Curve: Poisson Failures
alpha error rate: 20%  (one-sided)

 N=9
 N=8
 N=7
 N=6
 N=5
 N=4
 N=3
 N=2
 N=10. 1. 2. 3. 4. 5. 6.

Number of Failures Per MTBF Period

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Po
we

rCeramic bearings

LCD screens

GPS/INS Unit

Num MTBF 
Periods tested 

x

Null world – round 
response 3.5 ms

Alternate world –
response 4.0 ms

a: 0.05
Power: .999
d: 0.5ms

Hard Spec Limit

http://www.fas.org/spp/military/program/nav/egi-gps.jpg
http://www.google.com/imgres?imgurl=http://www.vxb.com/Merchant2/graphics/00000001/629c.jpg&imgrefurl=http://www.vxb.com/Merchant2/merchant.mvc?Screen=PROD&Store_Code=bearings&Product_Code=Kit7901&Category_Code=Longboard&usg=__MDXHL_FRPQQznP8ce5FvRQ3BH5E=&h=302&w=300&sz=37&hl=en&start=2&itbs=1&tbnid=UBjMvajuR9pykM:&tbnh=116&tbnw=115&prev=/images?q=ceramic+bearings&hl=en&gbv=2&tbs=isch:1
http://www.multicellphone.com/images/New prototype 3D LCD display screen by KDDI.jpg
http://www.visualintel.net/USAF/Weapon-Systems/A10-Thunderbolt-II/9726518_N3fYb
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• Training Program
• Mentoring – Train the Trainer
• Right Methods – Sound & Practical

Train

• Short Term Wins – Work Projects
• Solve Tough Problems
• Research and Complement

Practice

• Leadership Commitment
• Organizational Adoption
• Metrics and Policy 

Lead
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• Two extremes – the same conclusion:
– Existing tools are sufficient and do just fine in modeling 

safety, so no further research is needed
– Problems are so complex that there is no point of dealing 

with them now (we cross the bridge when we  come to it)
• Extensive specific domain knowledge is required as the 

underlying processes are unique and involved
• There is a lack of cohesion in engineering and scientific 

community making it difficult  to ensure that safety issues 
are adequately addressed

• This undercuts the trust from the decision makers  
(negative feedback loop):
– The decision makers do not invest in system safety 

problems
– So the community further dissolves
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• Existing approaches to assessing system-level safety:
– At the vehicle level: fault-trees and reliability block diagrams FAA 

certification following ARP4761
– At the ATC level: combination of fault-trees and event-trees. 

Similar to Probabilistic Risk Assessment (PRA) used in Nuclear 
and NASA Space program

• Both of those existing approaches decouple temporal (event 
trees or their equivalent) from logical complexity (fault trees or 
their equivalent)

• ATC operations exhibit highly coupled behavior between the 
temporal and logical domain, and this coupled behavior must be 
modeled at the bottom level using physics-based simulation 

• There are two issues with modeling coupled failure behavior at 
the bottom level:
– Breadth vs. depth trade-off in complexity – those simulations are 

really good depth-wise, not so good from the  breadth viewpoint
– Focus is on the simulation of the operation, rather than on paths 

and logic of failure propagation
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• Timing is important! 
Static tools (fault 
trees)  cannot capture 
the timing effects

• Simulation with 4-D 
trajectories is 
possible, but not 
practical as the control 
logic gets more and 
more complicated (the 
breadth issue)

Redundancy of space conflict resolution in current 
NAS (R. Hemm and A. Busick, ATIO 2009)

• Stochastic Petri Nets (SPNs) are suggested as an 
intermediate layer of analysis. Nested analysis is modular 
(unlike integrated application of SPN to safety of spacing 
separation– H. Blom et al,  ATIO 2007) 

• Succinct representation: compact discrete state-space and 
continuous time (more complex is not always better)
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Credible Hazard Scenario for 

CESTOL

• Cruise efficient short takeoff and landing CESTOL
• Spiral/Helix approach 
• Impact of wind (steady-state and gust) on the

trajectory in the regime of manual control
• Potential triggers of reverting to manual control:

– Generator/electrical failure of the equipment providing inputs to 
FMS

– Loss of navigational inputs to FMS or degraded state of FMS itself
• Motivation (potentially exacerbating factors)

– Changing heading (changing relative influence of the wind)
– CESTOL low wing loading – more susceptible to wind 

disturbances
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Spiral/Helix

• Spiral descent 
originally used as 
noise abatement 

• Moved off-airport 
to allow for 
stabilization 
maneuver

• Bank angles was 
allowed to vary and 
instead the radius 
is kept constant 
(helix)

Descent Helix for CESTOL (Image of Air 

Transportation Lab at Georgia Tech)
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Agent-Based Simulation of using NetLogo

• NetLogo has been 
developed at 
Northwestern 
University, has 
good interface with 
other pre- and 
post-processing 
software (Matlab, 
Mathematica)

• Main Parameters: 
geometry, wind, 
pilot response 
delay

NetLogo model  500 random trajectories

NetLogoHelix3/NetLogoHelix3.htm
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Simulation assumptions

• Uncertainty Sources: 
– Pilot’s response delay

– Forecast error 
(wind direction and intensity)

• Assumptions: 
– Rescaling & rotation of nominal 

wind according to Gaussian 
distribution ~N( , )

– Lognormal pilot’s response ~ L( L, 
L) (not to exceed 20 sec)

• Probability of minimum distance 
violation

East

North
Runway

Wind

Pviolation Pfailure_ fms Phelix_ drift Pother_ aicraft

Focus of the 

model

In general, things  are a bit 

more complicated (timing is 

important)
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Results from agent-based 

simulation

Pilot’s response time ~ L( L=10 sec, L=10 sec)

Wind intensity’s amplification factor ~ N( =1, = 0.1)
Error in wind direction ~ N( =0 , = 5 )

Wind

East

North
Runwa

y

P
d
>0.6 nm=0.093

P
d
>0.3 nm=0.586
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Introducing Stochastic Petri Nets

A repairable unit

• Tokens represent relevant entities of a modeled system
• Places represent possible states of those entities
• Tokens occupy places, thus realizing particular states of the 

corresponding entities
• The combination of all tokens’ locations (so-called marking) 

uniquely characterizes the modeled system
• Tokens move between places, simulating changes 

in the system state 
• Transitions describe the rules for token movements:

tokens are “fired” from one place to another via 
transitions

• Transitions fire only
when they are 
enabled (i.e., if certain 
conditions are satisfied)

• Transitions are enabled
based on where other 
tokens are thus capturing interdependence 
among components states (inhibitors are used) 

• An enabled transition fires after a specified delay 
(the transition’s attribute)
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Dr. V. Volovoi       11

SPN@: 

Implementation of SPN with aging tokens 
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12

Modeling of separation violation at a 

higher level of abstraction using SPN
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A Hazard Scenario from VLJ

• Very Light Jet on a straight steep (5.5 
degree) approach mixed with two 
regular aircraft loses capability to 
evaluate the altitude (e.g., Pitot tube 
obstruction resulting in corruption of 
air data) and starts to descent  faster 
than intended thus potentially leading 
to vertical space violation with the 
leading aircraft

Miles

Altitude (ft)

• ATC notices the impending loss of separation and orders leveling off
• If VLJ is not responding after a certain amount of time the leading 

aircraft is ordered to speed up the descent
• Single pilot vs. two pilots (remote co-pilot)
• Motivation – importance of accommodating mixed approach with 

various descent speed by means of vertical separation 
• Motivation – importance of investigating the viability of a back-up  pilot 

on the ground
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Challenges of modeling VLJ

• Standard load-sharing
by pilots (where in the case 
of emergency one pilot flies 
and the other trouble-shoots 
the problem and communicates 
with ATC) is not applicable 
when one of the pilots is on
the ground

• As a result, the co-pilot on the
ground is assumed to have the 
same capabilities as the VLJ 
pilot Snap Shot of NetLogo model of VLJ

• We assume that pilots share the load, thus conducting 
tasks faster (up to twice as fast). When ATC sends the 
command, the current task is completed, and then ATC 
command is executed
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Pilot Tasks breakdown and their 

duration
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Sample results for VLJ

• Pair-wise separation is studied when the faults are inserted at 
different altitudes (1000 cases of Monte Carlo agent based 
simulation)

Tracking pair-wise horizontal and 

vertical separation

Probability of the loss of vertical 

separation 

1-2 aircraft, loss of VNAV at 5000ft
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SPN: VLJ Hazard Scenario 
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Merging aircraft with optimized 

descent profile in LAX

Schematics of merging routes Agent-based simulation (Netlogo 
snapshot)

GRAMM

(KONZL)

LAADY

RIIVR

SEAVU

LUVYN

Only a portion of operational procedures in modeled 
in this example (no vectoring, acceleration or, 

coordinated conflict  is modeled), only two air traffic 
fluxes are considered



S
a

f
e

t
y
 
a

n
d

 
R

e
l
i
a

b
i
l
i
t
y
 
f
o

r
 
N

e
x

t
G

e
n

19

Merging aircraft with optimized descent profile

Flight time to merging point as a 
function of the wind – not that is non-

linear!

Wind distribution (as 
observed)

Optimized descent profile (also referred to as continuous descent) is 

implemented in LAX – has fuel efficiency and noise benefits but introduces 

uncertainty in traveling time due to wind
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Merging aircraft OPD in LAX – SPN model

Tokens represent aircraft that change colors in accordance with the 
ordered maneuvers. Statistics are collected about the conflicts at the 

merging point (when two tokens are together)
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Sample of results from SPN – efficiency of the 

maneuvers (unresolved conflict frequency)

Frequency of spacing violations as a function of a minimum 
separation within each flux (no wind is considered)
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Sample of results from SPN – efficiency of the 

maneuvers (unresolved conflict frequency)

Sensitivity of the maneuver efficiency as a function of 
the travelling time uncertainty (diamonds represent 

the results of global agent-based simulation for 
modeled wind) 
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n Safety Analysis of the Advanced Airspace 

Concept: State space representation

Time (minutes)

D(t)

Probability of Conflict Detection

Three layers of automation: 
1.Autoresolver (AR) – from 8-20  to 
3 min before the conflict
2.Tactical Separation-Assured Flight 
Environment (TSAFE) 1-3 min before 
the conflict
3.TCAS – 1 min
+ visual avoidance

Every 30 seconds
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Probability of Sub-system failure is 
increasing with time, and different layers 

share common subsystems: 
T – transponders (all three layers)

L – location function (AR and TSAFE) 
K – speakers TSAFE and TCAS, 

in addition subsystems specific to each 
layer also can fail (A, B, C for AR, TSAFE, 

and TCAS, respectively

AR phase 

(time steps 1-9)

AR to TSAFE transition

(time steps 10)

TSAFE phase 

(time steps 11-15)

Analytical procedure is developed it Includes 
modeling of dependent subsystems (by semi-

inverting Markov model for non-repairable portions 
of the system)



S
a

f
e

t
y
 
a

n
d

 
R

e
l
i
a

b
i
l
i
t
y
 
f
o

r
 
N

e
x

t
G

e
n Conclusions 

• Complexities of modeling safety aspects of NextGen should not 
prevent us from trying our best, as neglecting those aspects will lead 
to dire consequences

• Agent-based simulation provide a useful environment to investigate 
combined effects of NextGen, procedures, and vehicle characteristics 
(analogous to physics-of-failure modeling in reliability), but they have 
their limitations

• While realistic logic branching can be modeled using agent-based 
simulation, a more compact modeling at a higher level of abstraction is 
beneficial at the very least

• Nested hierarchy of models is required for comprehensively 
assessment of the safety of new vehicle integration into NextGen
– Most detailed level: agent-based and simulations of perturbations of 4-D 

trajectory as well as detailed human-performance models (including 
Human-in-the-loop simulations of specific scenarios)

– Intermediate level: Stochastic Petri Nets or analogous discrete-event 
simulation captures timing event, but provides discrete state-space 
representation. Markov chains if possible

– Top level: Fault Tree and similar Boolean Algebra tools



Statistical Design and Analysis of 
Experiments for Next Generation Air 
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NextGen

• Forecasts project air traffic demand to double by 2030

• The current Air Traffic Management system is already nearing its 
capacity

• If left unmodified, the current system cannot indefinitely sustain the 
projected traffic growth without inducing significant delays and 
inefficiencies

• The objective of the NextGen-Airspace Project is to develop and 
explore fundamental concepts, capabilities, and technologies to 
enable significant increases in the capacity, efficiency, and flexibility 
of the National Airspace System necessary for the Next Generation Air 
Transportation System (NextGen)

• NextGen Concepts and Technology Development Project
– Separation Assurance
– Safe and Efficient Surface Operations
– Super Density Operations

2



Safe and Efficient Surface Operations

• The National Transportation Safety Board has runway incursion 
prevention on its most wanted list for aviation safety

• Increase in air traffic forecasted under NextGen could exacerbate this 
problem

• The objective of SESO research is to develop technologies, data, and 
guidelines to enable conflict detection and resolution in the Terminal 
Maneuvering Area under NextGen operating concepts providing an 
additional, protective safety layer

HUD Guidance

Ownship position awarenessTraffic position awareness Route awareness

Taxi Surface MapDeparture Surface Map



Super Density Operations

• A key to airport efficiency is the ability to schedule, and then manage, 
the aircraft-to-aircraft spacing at the runway threshold. 

• Interleaving complex, three-dimensional routes with time constraints 
arriving from all directions very difficult for the human mind

• Current scheduling and arrival 
operations can be made more 
efficient

• The objective of Super Density 
Operations (SDO) research is to 
support the increase in capacity 
and throughput necessary for 
NextGen via simultaneous 
multi-objective sequencing, 
spacing, merging, and 
de-confliction for terminal 
airspace with nearby runway 
thresholds 4



Separation Assurance

• The objective of Separation Assurance (SA) research is to develop 
trajectory-based technologies and human/automation operating 
concepts capable of safely supporting the increase in capacity 
necessary for Next Generation Air Transportation System (NextGen)

• In the current Air Traffic Management system, separation of aircraft is 
the most important task for an air traffic controller in high density 
airspace and is one of the main factors in controller workload

• This approach is inherently limited by controller workload and will not 
be able to support the expected traffic growth

5

• A new airborne trajectory management with 
self-separation concept developed, in which 
the pilot is responsible for managing the 
separation for his or her aircraft supported 
by onboard automation

• A Human-in-the-Loop (HITL) experiment was 
conducted to study a new airborne trajectory 
management with self-separation concept



Air Traffic Operations Laboratory

• The Air Traffic Operations Laboratory (ATOL) hosts a simulation 
platform which provides a medium fidelity setting for studying the 
interactions of aircraft

• The simulation networks multiple individual pilot stations called 
Aircraft Simulation for Traffic Operations Research (ASTOR) and a 
background traffic generator called Traffic Manager (TMX)

• The ATOL has over 300 
computers, including 12 desktop 
pilot workstations, for conducting 
both Human-in-the-Loop (HITL) 
and batch (simulation) 
experiments



Air Traffic Operations Laboratory (ATOL)

Batch Aircraft (ASTOR & TMX)

Aircraft Simulation for Traffic Operations Research (ASTOR) HITL Interface

Human Piloted Aircraft



• Detecting and resolving traffic conflicts
• Verifying all trajectory changes are 

conflict-free
• Conforming trajectory to additional 

operational constraints 
– Service provider (e.g. flow 

constraints, SUA)
– Operator (e.g. company policy, 

optimization criteria)
– Environment (e.g. weather hazards)

Separation Assurance



Statistical Design of SA HITL

• Research questions are framed as statistical hypotheses to test in the 
experiment
– Flight path deviation will be larger in far-term (2.0x) traffic density 

conditions than in mid-term (1.5x) traffic density conditions

• The experiment is designed to investigate these hypotheses

• A formal peer-driven review process is employed to ensure the 
objectives are met
– Preliminary Experiment Review (PER)
– Simulation Requirements Review (SRR)
– Final Experiment Review (FER)

9



Experiment Factors / Independent Variables

• Traffic Density (1.5x, 2.0x)
– Reference: 1x = 18 aircraft per 10,000 nm2

– Maintained constant throughout data run

• Scheduling Assignment (No RTA, Yes RTA)
– Required Time of Arrival (RTA)

• Trajectory Change Event Timing (None, Disbursed, Synchronous)
– Revised RTA sent via data link
– Approx 6-8 minute delay requiring path stretch

X X

0 15 min.2 13

X X

Disbursed

Synchronous

10



Experiment Design Matrices

• 30-minute scenarios
– Within-subject design
– No trajectory change events
– 2 replicates (8 runs total)

• 15-minute scenarios
– Within-subject design
– Traffic density (2.0x)
– Scheduling assignment (Yes)
– 2 replicates (6 runs total)

Scheduling 
Assignment

No
M1 M2

Yes
M4 M3

1.5x 2.0x

Traffic Density

Timing of Trajectory Change Event

2.0x

Traffic

Density

None Disbursed Synchronous

S1 S2 S3



Pilot Participants and Experimental Protocol

• 48 pilots: 4 groups of 12 pilots each
– Groups 1-3: all domestic U.S. pilots
– Group 4: mix of domestic U.S. and international pilots 

• To support global research perspective on airborne self-
separation

• 3 day experiment sessions for each group of participants
– Day 1: Classroom and hands-on training (10 training scenarios)
– Day 2: Final training scenario + 8 experiment scenarios (30 min)
– Day 3: 6 experiment scenarios (15 min) + group debrief session

12



Blocking Strategy

• Blocking is a method of partitioning the runs into homogeneous sets, 
or blocks, based on a blocking factor

• Analysis of a block design involves the comparison of runs within the 
same block, which removes variability due to the blocking factor

• This reduces experimental error and provides more precise answers 
to research questions

• Group was a blocking factor
– Four independent groups of 12 pilots participated in four separate 

three-day experiment sessions
– Groups 1, 2, and 3 consisted solely of American pilots
– Group 4 included European pilots to support a global perspective 

on Air Traffic Management research
– The groups of pilots were trained separately

13



Experiment Run Order

• Order in which treatments are assigned can have important effects on 
the experiment results and answers to research questions

• This is particularly true in HITL experiments where order can affect the 
behavior of participants due to fatigue, learning curve, or other 
outside factors

• Two of the ways to control for order effects are randomization and 
counterbalancing

• Randomization of the treatments is the most common approach
– Minimizes the impact of any systematic bias on the results
– Is an underlying assumption of most commonly used statistical 

methods

14



Experiment Run Order

• Counterbalancing assumes a confounding order effect exists which 
cannot be controlled or randomized out of existence
– Distributes equal amount of the confounding effect to each 

treatment in such a way that the effect will counterbalance itself 
and not bias the results

– Main disadvantage is the additional complexity introduced into 
both the experiment design and data analysis

• In the SA HITL, aircraft callsigns were randomly assigned to pilots
– Randomized separately for each run and for each group of pilots
– Scenario difficulty and conflicts encountered varied by callsign

• Blocked by group of pilots, so the order of the scenarios was 
randomized separately for each group

15



Correlation

• Standard statistical analysis methods are based on the assumption 
that observations are independent

• However, in HITLs the data have a specific correlation structure
– Aircraft flown by the same pilot are not independent
– Aircraft flown by pilots in the same group are not independent
– Aircraft flown by pilots in different groups are independent

• Three methods for addressing this correlation structure are to ignore 
it, estimate it, or account for it in the design
– Ignoring correlation violates the assumption of independence and 

can lead to over- or under-estimation, which affects all hypothesis 
tests and conclusions

– Obtaining a good estimate of the covariance matrix to address the 
correlation in the data analysis can be very difficult

– Accounting for the correlation structure in the experiment design 
is often the best choice, but requires careful planning prior to data 
collection

16



Statistical Data Analysis and Interpretation

• Hypothesis: Flight path deviation will be larger in far-term (2.0x) traffic 
density conditions than in mid-term (1.5x) traffic density conditions.

• Conclusion: The traffic density effect was found to be significant at 
the alpha = 0.05 level, indicating that increasing the traffic density 
from 1.5x to 2.0x increased the mean lateral flight path deviation.
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Coordinated Experiments

• This SA HITL simulation was part of a coordinated experiment with 
NASA Ames Research Center

• The primary goal of these coordinated experiments was to assess the 
degree of comparability possible

• This was the first in a series of experiments within a multi-year 
research plan to study advanced function allocation concepts for 
NextGen separation assurance in high density airspace

• Although these experiments were jointly designed and conducted in 
parallel, they differed in the number of replicates, the blocking 
strategy, and the method for controlling for order effects

• Differences in the experiment designs resulted in differences in the 
data analysis, which made comparison of the results more difficult

18



Coordinated Experiments

• One way to compare the concepts is by conducting statistical 
hypothesis tests to determine which factors have a significant effect 
on the response

• The quality of a hypothesis test depends on its power, which is the 
probability of making a correct decision

• Initial results can be used to design future coordinated experiments so 
that statistical hypothesis tests with the same power can be 
conducted

• This would provide a higher degree of comparability for the two 
concepts
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Conclusions

• Taking lessons learned from this HITL and other simulations, future 
experiments will continue to use statistical design of experiments to 
– improve efficiency
– answer more research questions with greater precision
– ensure that the experiment design and data collected will allow for 

the evaluation of the hypotheses of interest

• Currently developing experiment plan for the next Separation 
Assurance HITL investigating a mixed-operation concept
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Motivation for New System Reliability 
Approach

Aging P/F data
($500 + destructive)

System

Comp 1 Comp 2 Sub-system 1 Comp 4

A i P/F d t

Aging P/F data
($10)

Comp 3.1 Comp 3.2
Aging P/F data

($10)

Testset degradation
($5)

Aging P/F data
($5) P/F data

($5)
Testset Degradation

($5)

P/F data
($10)

Total cost = $50

Advantages of SRFYDO Approach
• Uses data already available and thought to be 
relevant to predict reliability

• Improves precision of estimation with fewer 
destructive full system testsdestructive full‐system tests

• Check on consistency of information from different 
data sources

• Flexibility to incorporate partial information into 
model

• Ability to predict failure before being observed in 
full system testfull‐system test

• Component level reliabilities – leverage from 
different versions of system + better understanding

Disadvantage:More complex statistical method 
requiring more engineering knowledge to obtain results
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Advantage: Ability to predict failure before 
being observed in full‐system test

• Because we can track a trend in some of the 
continuous measurements, we can anticipate 
when failures might start to occur, before they 
actually have been observed

Advantage: Component Level 
Summaries

• Better understanding of system and important 
drivers of system reliability 

• Ability to identify critical components and critical 
specs to implement corrective action
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Advantage: Component Level Summaries 
(cont’d)

• Ability to compare different versions of the 
tsame component

Advantage: Component Level Summaries 
(cont’d)

• Ability to leverage data 
across different variants 
with common components

• Data used to estimate 
reliability:
– SAF2x + 21 others → 75+47 =              

75 47

122

– ADP1x + 6 others  → 75

– ADP2x + 6 others  →    47
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Basic Building Block
• Here we have two potential sources of information 
about this component:

From the full system data we obtainFrom testset data, we obtain the 
mean of the characteristic at each 
time

From the full system data, we obtain 
a proportion of success/failure at 
each time

T1: 3 of 32
T2: 8 of 39
T3: 4 of 16

Prob of
failure

Prob of part
working

Statistical Formulation
• For the probability that a particular component, say 

component with spec 1, will function correctly

  0,1 1,1 1
1 2 2

1 1

( ) ( )x
p x

  

 

 





0,1 initial mean of testset distribution 

cdf of Normal distribution 

1,1

2
1

1
2

1

rate of shift of testset distribution

variance of testset distribution
discrepancy between means of spec and full system

 additional variance from













 full system distribution
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Background of Users

• Subject Matter Experts 
(SME) on particular system

• Customers
• Department of Defense(SME)  on particular system

– System Engineers

– Data Analysts

• Little or no formal 
statistical training

p
– NSWC Corona (RAM, 
ESSM, SeaSPARROW)

– NSWC Yorktown / Indian 
Head (AMRAAM)

– AMCOM/AMRDEC 
(Hellfire, Stinger)

– MCPD Fallbrook (TOW)MCPD Fallbrook (TOW)

• Department of Energy
– LANL Enhanced and Core 
Surveillance Campaign

Evolution of SRFYDO

1. Development of methods

• LANL statisticians sat down with team of SMEs• LANL statisticians sat down with team of SMEs
– Develop system model (identify components and how 
connected, map available data to components, obtain priors 
for analysis) 

– Statisticians did analysis

– Sat down with SMEs to interpret results, fine‐tune model

Characteristics:
• Helpful for development of new methodology – key problems identified
• Long lag for engineers until methods available
• New data added to analysis as it became available
• Methodology implemented with unfriendly code (usable only be creators)
• Very time intensive – not scalable to many systems
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Evolution (continued)
2. Development of prototype 
of SRFYDO

‐ Formal analysis from GUI

‐ EXCEL spreadsheet inputs

Evolution (cont’d)

• Output as PDF and 
flat text

Testset level

flat text
Component level

Characteristics:
• SMEs able to function more independently
• Much more timely
• Many requests for special summaries 
(often integrated into SRFYDO later)

System level summaries
• When applied to new systems, system 
modeling was often difficult
• Much of data and model assumption 
checking that LANL did in early stages was 
not happening (constructing summaries in 
own software was easy to skip)
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3. Larger process developed with EDA stage in 
SRFYDO

• EDA graphics

• Sanity checksSanity checks

• Itemized model                                          assumptions

Process for verifying assumptions:
- Engineering knowledge
- Examining summaries from EDA
- Both 

Characteristics:
• SMEs able to function more independently
• Many more discussions about assumptions and boundaries of where model 
appropriate
• Many fewer re-analyses (huge time-saving)
• More scalable – getting a new system ready for analysis more timely
• SME gaining confidence and expertise with method
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4. New methodology added

• Population reliability for 
group of systems added g p y
(POP stage)

Final Product and Process
• SRFYDO is the computational 
engine to guide a process

• EDA mode uses common 
statistical summaries and 
graphics which builds in 
assumptions checking

• Systems analyzed range from:
– 5 components with one variant  

– 35 components with 8 variants             
(60+ total components)

Users functioning relatively independently
LANL offers annual training and consulting support
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Lessons Learned
• When the focus was on software, our scope was too limited 

and we were not gaining much traction

• The shift to a guided process (with built in tools for each step) 
was transformational to our success – the training focuses on 
the process with SRFYDO being its support 

• Assumption check is intuitive for many statisticians, but is built 
on a foundation of statistical training – making this concrete, 
accessible and well defined for our customers was essential

• If the summaries / tools needed to perform an analysis are / p y
easily available, then the focus shifts to interpretation and 
decision‐making

• The plan evolved and was driven by both the users and the 
creators 

Conclusions
• The process for obtaining system reliability estimates using 

multiple sources of data using SRFYDO offers a way of 
incorporating relevant sub‐system and component level data 
to supplement full‐system data, which leads to better 
understanding and a potential improvement to the precision of 
estimation and prediction

• It allows SMEs to use a sophisticated statistical approach 
without having to master all of the details of the analysis, but 
depends of engineering judgment to make sure we have 
answered the right question

SRFYDO runs on a PC (requires Python, JAVA and Excel) and
is available to any US Government agency free of charge  srfydo@lanl.gov

Christine Anderson-Cook  candcook@lanl.gov
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• Introduction

– Lifetime data & reliability analysis

– Weibull distribution

– Life Tests

– Accelerated Life Tests (ALTs)

– Censoring

• Designing Accelerated Life Tests

– Guidelines

– Monte Carlo Methods

• Applications 

– NASA COPV Example

– Air Force Transponder Mounting Bracket Example

Outline
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• Reliability: ability of a system to perform a required function

• Lifetime data: a quantity of paramount importance to product reliability

– Life Tests

– Accelerated Life Tests

• Popular distributions for modeling lifetime data

– Weibull*

– Lognormal

– Exponential

– Gamma

Introduction
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• Probability density function:

• Hazard Function:

• Popular distribution because 
of its flexibility to model 
different failure mechanisms

Weibull Distribution
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• Bathtub Hazard Function

– Can be modeled as the mixing of three Weibull distributions.

Weibull Distribution
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• Life Tests (LTs)
– Goal: model product lifetimes a use conditions

• Accelerated Life Tests (ALTs)
– Goal: Increase the probability of failure by modeling product lifetimes 

at accelerated conditions
» Accelerated in temperature, voltage, humidity, stress, etc.
» Project back to use conditions through linearizing relationship

• Common DOEs for LTs and ALTs
– Completely randomized
– Optimal
– Designs focus on:

» How many units should we use?
» How long should we run the test?

• Complicating issues
– Censoring
– Prediction beyond design space

Designed Experiments & Reliability Testing
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• Maximum likelihood estimation easily incorporates 

censoring

• Censoring – what is it?
– When we are unable to observe a failure time exactly

– We do know that the unit in question will fail in a certain range 

• Types of Censoring
– Left

– Right (Type I & Type II)

– Interval

Censoring
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• Contributions to Likelihood
– An exact failure time is not observed for a unit

– Instead we have a range in which the failure occurs

– Where F(ti) is the cumulative distribution function at a given time

Censoring

Censoring

Type

Range for 

Failure Time, T

Likelihood

Contribution

Left T ≤ ti F(ti)

Right T ≥ ti 1-F(ti)

Interval ti-1≤ T ≤ ti [F(ti)-F(ti-1)]

None (Exact

Failure)
N/A f(ti)

1-F(ti)F(ti)-F(ti-

1)

F(ti)
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• Total Likelihood – product of all likelihood contributions:

Censoring

Left Censoring 

Contribution
Interval 

Censoring 

Contribution

Exact 

Failure Right Censoring 

Contribution
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Life Tests

• Designed to measure product lifetime under typical use conditions.

• Weibull Model:

• Limitation

– Reliable products may not fail in a reasonable timeframe
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Accelerated Life Tests

• Accelerate the number of failures observed during the test by using one 
or more accelerating factor

• Common methods:

– Temperature

– Stress

– Humidity

• Linearizing relationship between model parameters and accelerating 
variable must be understood.

– Engineering knowledge of the relationship is of paramount importance 
otherwise, model fit will be wrong and projections to use conditions will 
be nonsensical.

• Common linearizing relationships:

– Arrhenius relationship (temperature)

– Inverse power law (stress, voltage, pressure acceleration)

– Generalized Eyring (one or more non-thermal accelerating variables)
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Designing Accelerated Life Tests

• Experimental designs to date focus on:

– How many units should we use?

– How long should we run the test?

– Under what conditions should I accelerate the units?

• Prior knowledge of the model parameters is key for planning ALTs

• Monte Carlo simulations can be used to construct optimum designs

– Minimizing standard error

– Minimizing the determinant of the Fisher Information matrix

• Meeker & Escobar recommendations

– Caution about using optimum designs without augmentation

– Use insurance units at use conditions

– Use 3-4 levels of the accelerating variable

– Minimize extrapolation (use the lowest level of acceleration possible)

– Allocate more units to lower levels of the accelerating variable and fewer 
units to higher levels of the accelerating variable
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Applications of Accelerated Life Testing

• NASA Carbon Fiber Strands for encasing the Composite 

Overwrapped Pressure Vessel (COPV) 

• Air Force Transponder Mounting Bracket
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Composite Overwrapped Pressure Vessel (COPV)

• Problem Statement: Bursting carbon fiber 
strands is a failure mode that has been observed 
in the lab but never under use conditions.  We 
need to understand this failure mechanism.

• Goal: to develop a model that predicts time to 
failure for carbon fiber strands at use conditions.

• Historical Data:

– Kevlar Fiber Strand Testing

• Test Approach

– Previous data for Kevlar strands focuses on 
stress ratio acceleration

– Add temperature acceleration

– Modified Factorial Design to accommodate 
ALT specific concerns.
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Composite Overwrapped Pressure Vessel (COPV)

• Classic Power Law model:

• Weibull Model:

Stress 

Ratio 

(SR)

Temp

(°F)

Number of 

Strands

Expected Number 

of Failures at One 

Week 

Low High 25 4.49

Medium Low 25 11.72

Medium High 15 5.11

High Low 15 9.25

Total Number 80
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Mounting Bracket for Aircraft Transponder Tray

• Problem Statement: 

– The mounting bracket that holds the transponder tray in place on military 
aircraft are cracking.  They were designed to be used on commercial aircraft.  
To fix the problem the Air Force has proposed an updated mounting tray 
with an extra stabilizer.  However, there is concern that this additional 
stabilizer may induce  a new failure mechanism.

• Goal: to develop a model that predicts time to failure for the new mounting 
bracket.

• Historical Data:

– Time to failure for historical mounting bracket.

– Times are interval censored.

• Test Approach

– Vibration Acceleration

– For operational realism, mounting bracket needs to be tested with actual 
aircraft and transponder tray.
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Applications & Challenges in DoD Testing

• Need for ALT Application in DoD Testing

– Nearly all military systems have reliability requirements that are not 
achievable in the typical test period.

– Increased emphasis on reliability.

– Upgrades to existing systems.

• Challenges

– General caution about statistical models, they have not been differentiated 
from modeling and simulation.

– Projection beyond the test design space caries increased risk.

– Limited capabilities to implement these types of statistical methodologies in 
DoD testing.
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Sources Of Uncertainty in Climate Science and Applications

Crop Yield Prediction Process

Analysis Of Results

Uncertainty Characterization and CommunicationUncertainty Characterization and Communication
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Committee On Earth Observation Satellites (CEOS) Purpose & 
Scopep

What is the impact of climate change 
(temperature and precipitation) and its 
uncertainty on the change to agriculture 

Decision 
Topic

Societal Benefit

yield in Central America and how will it 
impact water resource management 
decisions in that region?

Temperature Forecasts
Precipitation Forecasts
D i i S t T l IPCC Scenarios

Information 
Decision Support Tools

Regional Climate 
M d l (RCM)

WRF – Central 
America

IPCC ScenariosProducts and 
Services SERVIR and DSSAT – Central 

America
Uncertainty 
Analysis

Models (RCM)
Global Circulation 
Models (GCM)

America

NCAR Community 
Climate System Model 
(CCSM)

Science Knowledge 
and ModelsExamine the 

uncertainty at 
every level 
(measurements 

Precipitation
Temperature

Measurements

to forecasts) 
and determine 
the impact on a 
specific 
decision.

2

Earth observation 
satellites

Instruments 
and Missions

decision.



Sources of Uncertainty Analyzedy y

Climate Uncertainty
R i f ll t i t di th ff t f i f ll i i ld• Rainfall uncertainty regarding the effect of rainfall on maize yield

• Temperature uncertainty regarding the effect of temperature on 
maize yield

Emission Uncertainty
• Two emission scenarios affect the maize yield, rainfall, and 

temperature predictions for all of the models
Model Uncertainty
• Global Circulation Model (GCM) Uncertainties

o Uncertainty exists from model to model in that each model makes y
distinct predictions about maize yield, rainfall, and temperature

3



Goals for Communicating and Displaying Uncertainties for 
Decision Support

Develop a repeatable and traceable framework for characterizing 
uncertainty in climate modeling

pp

uncertainty in climate modeling
Isolate the few important factors impacting decision support from the 
trivial many
F i ti ll il bl i f ti d thFocus on incorporating all available information and sources rather 
than subjectively biased selections
Incorporate insightful graphical communication that enables 

l t l i f iti l f texploratory analysis of critical factors
Provide answers to decision-makers that clearly communicate 
uncertainty and risk 

4
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Sources Of Uncertainty in Climate Science and Applications

Crop Yield Prediction Process

Analysis Of Results

Uncertainty Characterization and CommunicationUncertainty Characterization and Communication
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Focus Region For The Pilot Study

Domain Elevation and Sub‐regions

g y

l

Northern 
Highlands

Northern 
Lowlands

Hispaniola

Costa Rica
Isthmus Panama

6



Crop Yield Prediction Process - Overviewp

The crop yield prediction process requires a synthesis of models and 
information:information:
• Tocumen, Panama (located near Panama City), was selected as a 

trial location
• This site was selected because of its longer history of dailyThis site was selected because of its longer history of daily 

meteorological observations
• We generated crop yield data for maize based upon the 

characteristics of local fields,  their agricultural practices, and 
b d l i l di iobserved meteorological conditions

• Scenarios of climate change during the planting season were 
generated for the region
Yi ld i l ti d i b hi t i d f t li t i• Yield simulations driven by historic and future climate scenarios 
are compared to determine the range of likely impacts of climate 
change.
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Crop Yield Prediction Process – Crop Modelp p

Maize yield was simulated using the Crop Estimation through 
Resource and Environment Synthesis (CERES Maize) biophysical cropResource and Environment Synthesis (CERES-Maize) biophysical crop 
model, which is an element of the Decision Support System for 
Agrotechnology Transfer (DSSAT) family of models

CERES-Maize requires the following information:
• Crop cultivar: genetic information about the crop to be grown
• Field characteristics: soil type, initial moisture, field drainage, etc.
• Agricultural management: planting dates and geometry, 

irrigation/fertilizer applications, etc.
• Local meteorology: daily sunshine, min/max temperatures, and 

rainfall

8



Crop Yield Prediction Process – Future Climatep

Climate change information was taken by comparing future (2020-2049) and 
baseline (1970-1999) climates from five climate models contributed to thebaseline (1970 1999) climates from five climate models contributed to the 
Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report.  
• The A2 and B1 scenarios were examined to gauge societal uncertainties

o For definitions of A2 and B1 see IPCC Special Report Emissions Scenariosp p
• Monthly temperature changes
• Monthly rainfall percentage changes
• Historic daily meteorology and carbon dioxide concentrations modified y gy

according to climate changes to produce future scenarios
GCM Name Institution Atmospheric 

Resolution 
(lat, lon, °)

Equilibrium Climate 
Sensitivity (°C) for 
doubling of CO2

gfdl_cm2_1 Geophysical Fluid Dynamics Laboratory, USA 2x2.5 3.4
giss_model_e_r NASA Goddard Institute for Space Studies, USA 4x5 2.7

mpi_echam5 Max Planck Institute for Meteorology, Germany 1.878x1.88 3.4
ncar ccsm3 0 University Corporation for Atmospheric Research, 1.4x1.4 2.7
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ncar_ccsm3_0 University Corporation for Atmospheric Research, 
USA

1.4x1.4 2.7

ukmo_hadcm3 Hadley Centre for Climate Prediction, Met Office, UK 2.5x3.75 3.3



Rainfall & Temperature Projections Are Aggregated To Seasonal 
Periods Over The Prediction Range (2020-2049)g ( )

Temperature is measured in degrees Celsius 
• Chart represents the change in temperature from the baseline 

period
Rainfall is measured in millimeters

Temp Change GFDL2.1_A2 GISS_Er_A2 ECHAM5_A2 CCSM_A2 UKMO_A2 GFDL2.1_B1 GISS_Er_B1 ECHAM5_B1 CCSM_B1 UKMO_B1
May 1 91 1 79 1 12 1 21 1 56 1 27 1 43 1 23 0 83 1 73

• Chart represents the percentage change in rainfall from the 
baseline period

May 1.91 1.79 1.12 1.21 1.56 1.27 1.43 1.23 0.83 1.73
June 1.36 1.45 0.96 1.25 1.19 1.07 1.26 1.12 0.94 1.4
July 1.24 1.18 0.88 1.22 1.2 1.1 1.1 0.8 0.98 1.07
August 1.29 1.28 0.57 1.27 0.85 1.22 1.18 0.54 1.06 0.65
September 1.18 1.34 0.53 1.3 1.02 1.06 1.08 0.57 1.02 0.95

Rainfall Change GFDL2.1_A2 GISS_Er_A2 ECHAM5_A2 CCSM_A2 UKMO_A2 GFDL2.1_B1 GISS_Er_B1 ECHAM5_B1 CCSM_B1 UKMO_B1
May ‐4.6 ‐1.2 0.2 3.2 ‐5.5 18.6 ‐0.8 ‐8 ‐5.8 ‐13.5
June ‐4.3 ‐5.5 1 0.8 18.7 ‐17.3 ‐5.1 0.2 2.1 7.7
July ‐13.5 2.9 7.3 ‐7 0.6 ‐14.5 2 4.6 ‐4.1 2.4

10

August ‐10.1 3 6.4 ‐4.9 7.5 4.6 ‐1.7 4.1 ‐1.7 1.2
September ‐10.4 ‐2.6 0.1 ‐0.4 13.8 ‐2 ‐1 ‐7.2 6.3 3.3



Five GCMs Project Maize Yield Through IPCC Emission Scenarios 
A2 And B1

baseline yr baseline GCM yr GFDL2.1_A2 GISS_Er_A2 ECHAM5_A2 CCSM_A2 UKMO_A2 GFDL2.1_B1 GISS_Er_B1 ECHAM5_B1 CCSM_B1 UKMO_B1
1970 4264 2020 3192 3397 3758 2926 3556 3122 3331 3664 3433 3589
1971 3026 2021 3418 3537 4321 3848 3910 3401 3621 4088 3810 3627
1972 5296 2022 5310 5537 5768 4980 5279 4932 5109 5410 5224 5588
1973 3922 2023 3273 3436 3774 3397 3547 3261 3378 3603 3553 3477
1974 3205 2024 3778 3714 4151 3639 3772 3803 3684 3994 3595 3868
1975 3813 2025 4267 4437 4784 4284 4572 4165 4369 4223 4146 4490
1976 2873 2026 3506 3747 3214 4014 4120 3846 3987 3044 3113 3805
1977 3086 2027 3624 3714 3396 3028 3785 3126 3672 3436 3174 3816
1978 4781 2028 4689 4863 5127 4550 4772 4569 4618 5223 4963 5025
1979 4150 2029 3813 3998 4504 3969 4306 3827 3880 4439 3864 4357
1980 1785 2030 2911 2982 2509 2198 2408 2306 2316 2249 2540 3106
1981 4213 2031 4142 4099 4341 3781 4409 3706 3933 4186 3782 4423
1982 3757 2032 3539 4031 4528 4069 4095 3648 3994 4238 4100 41041982 3757 2032 3539 4031 4528 4069 4095 3648 3994 4238 4100 4104
1983 2635 2033 3170 3371 3762 3114 3364 3224 3366 3616 3062 3478
1984 3615 2034 3929 4092 3953 3514 4185 3468 4077 3755 3637 4054
1985 2490 2035 3119 3439 3410 3105 3314 2972 3147 3113 2975 3186
1986 1746 2036 3301 3087 3347 3322 3255 3029 3041 3316 2957 3149
1987 4012 2037 3922 4005 3704 3807 4521 3751 3738 3820 3801 4106

GCM

Baseline Observation

Ti

Yield is measured in kilograms per 10,000 
square meters  
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Outline

Overview of CEOS and the Project

Sources Of Uncertainty in Climate Science and Applications

Crop Yield Prediction Process

Analysis Of ResultsAnalysis Of Results

Uncertainty Characterization and Communication
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Baseline Maize Yield & GCM-Projected Maize Yield (2020-2049) 
By Scenario Across GCMsy

13



GCM-Projected (2020-2049) Maize Yield By Model & Scenario

Average annual 
ld f
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yield for GCM



Rainfall & GCM-Projected (2020-2049) Maize Yield By Scenario

B1

CCSM
ECHAM5
GFDL2.1
GISS_Er
UKMO

A2
Monthly Yield Means for 5 GCM’s
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Monthly Rain Means for 5 GCM’s



Temp & GCM-Projected (2020-2049) Maize Yield By Scenario

B1

CCSM
ECHAM5
GFDL2.1
GISS_Er
UKMO

A2
Monthly Yield Means for 5 GCM’s
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Monthly Temperature Means for 5 GCM’s



GCM Projections In Tocumen (2020-2049) For Temperature & 
Rainfall Display A Lack Of Correlation

Bivariate Fit of Mean(GCMTemp) By Mean(GCMRain)
Bivariate Normal Ellipses

p y

Temperature and rainfall are not 
significantly correlatedsignificantly correlated 
(Pearson test)
95% of the time 
• Temperature is between 24.6Temperature is between 24.6 

and 26.6 Celsius
• Rainfall is between 2.5 and 

9.75 mm 
50% of the time
• Temperature is between 25.3 

and 26.4 Celsius
• Rainfall is between 4 and 7.75 

mm

Average 
hl

CCSM
ECHAM5

17

monthly GCM 
temperature Average 

monthly GCM 
rainfall

ECHAM5
GFDL2.1
GISS_Er
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Outline

Sources Of Uncertainty in Climate Science and Applications

Crop Yield Prediction Process

Analysis Of Results

Uncertainty Characterization and CommunicationUncertainty Characterization and Communication
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Distribution Analysis Deals With Uncertainty Across Years 
(2020-2049), GCMs, & Scenarios( )

The probability that Maize Yield will be above or below the baseline 
average (3430) during any future year

90%

100%

Probability Yield > x

average (3430) during any future year

Prob

Below Baseline (3430) 42% 

60%

70%

80%

lit
y

e o ase e (3 30) %

Around Baseline (+/-10%) 26% 

Above Baseline (3430) 58% 

30%

40%

50%

Pr
ob

ab
i

0%

10%

20%

1000 2000 3000 4000 5000 6000 70003430
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Bivariate Analysis Shows That Rainfall & Temp Do Affect 
GCM-Projected (2020-2049) Maize Yield

Temperature & Yield Percentages 
for CO2 GCM Projections in Tocumen (2020-2049)

Rainfall & Yield Percentages 
for CO2 GCM Projections in Tocumen (2020-2049)

Follow-on analysis can determine 
1. optimal levels of temp and rain for maize yield
2. the probability of encountering optimal conditions P = 0.950 Density Ellipse

P = 0.500 Density Ellipse

20

Baseline Average Yield = 3430
GCM Average Yield = 3607



Distribution Analysis Shows That GCMs Predict Hot 
Temperatures During Future Years (2020-2049) In Tocumen

Probability Temp > x

80%

90%

100%

50%

60%

70%

ba
bi
lit
y

L T

20%

30%

40%Pr
ob Low Temp

High Temp

0%

10%

24 24.5 25 25.5 26 26.5 27
Prb

L T <24 9 3%
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Temp
Low Temp <24.9 3% 

High Temp >24.9 97% 



GCMs Predict That There Is An Almost Equal Probability Of 
Low Rainfall Vs High Rainfall During Future Years (2020-2049) 
In Tocumen

100%

Probability Rainfall > x

In Tocumen

70%

80%

90%

50%

60%

70%

ob
ab

ili
ty

Low Rainfall

20%

30%

40%Pr
o

High Rainfall

0%

10%

3 4 5 6 7 8 9 10 11 12

Prb
Low Rain <6.6 71% 

22

Rainfall High Rain >6.6 29% 



Rainfall & Temperature Far From Baseline Averages Impact The 
Probability Of Maize Yield For Any Future Year (2020-2049)

Low Temp, High Rain
Results are preliminary only

Low Temp, Low Rain Prb

B l B li (3430) 79 74%

y y ( )

Results are preliminary only
Insufficient data available in this space
A follow-on activity would be to model 
predictions through this space

Below Baseline (3430) 79.74% 

Around Baseline (+/-10%) 53.72% 

Above Baseline (3430) 20.26% 

High Temp, Low Rain Prb

( )

High Temp, High Rain Prb
Below Baseline (3430) 50.20% 

Around Baseline (+/-10%) 27.85% 

Above Baseline (3430) 49 80%

Below Baseline (3430) 22.40% 

Around Baseline (+/-10%) 19.82% 

Above Baseline (3430) 77 60%Above Baseline (3430) 49.80% Above Baseline (3430) 77.60% 

Low Temp is defined as temp below the baseline average (24.9)
Low Rainfall is defined as rainfall below the baseline average (6 6)
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Low Rainfall is defined as rainfall below the baseline average (6.6)



Knowing The Probability Distribution Of Temp & Rain Determines 
The Likelihood Of Maize Yield Scenarios (2020-2049)

Likelihood Of Climate Scenario & Favorable Yield

Prb Yield Above Baseline Prb Yield Below Baseline

( )

0 502

0.498

69% Prob (High Temp & Low Rain)

Prb Yield Above Baseline Prb Yield Below Baseline

0.502

0.78

28% Prob (High Temp & High Rain)
0.22

0 46

28% Prob (High Temp & High Rain)

0.54

0.46

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

2% Prob (Low Temp & Low Rain)
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Potential enhancement of decision support systems through better 
understanding of climate observational uncertainties
and their impacts

Development and validation of innovative integrated decision support tools
Assessment of the success of data policies in terms of ensuring local data 

p

p g
input to Decision Support System for Agrotechnology Transfer (DSSAT ) and 
Mesoamerican Environmental Monitoring System (SERVIR)
Assessment of the needs and opportunities for capacity building in 
Mesoamerica (e.g., which groups, subject matter, etc)
Identification of areas where new scientific understanding is needed to 
improve products, assimilation systems and models, and decision support 
tools
Characterize the likelihood of extreme values in factors such as rainfall and 
temperature, e.g. El Nino. Explore the consequences of extreme values on 
maize yield.
Determine the optimal temperature range and optimal rainfall range for maize 
yield in a specific region
Develop a probabilistic relationship between temperature, rainfall, and maize 
yield. This relationship will characterize the interaction between temperature 
and rainfall on maize yield. This is an improvement on the main-effects model 
previously built.
A i t llit d t d l t t i t i t llit t
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Acquire raw satellite data and evaluate uncertainty in satellite measurements. 



Developing a Measurement System 
Uncertainty Framework for

Earth Observing Satellites

Nipa Phojanamongkolkij
NASA Langley Research Center

04/05/2011
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The CLARREO mission

• The Climate Absolute Radiance and Refractivity 
Observatory (CLARREO) is an Earth Observing 
Satellite mission to provide accurate 
measurements to substantially improve 
understanding of climate change.

• CLARREO will include a Reflected Solar (RS) Suite, 
an Infrared (IR) Suite, and a Global Navigation 
Satellite System–Radio Occultation (GNSS-RO).

• CLARREO is in the mission formulation phase 
(Pre-Phase A.)

2



CLARREO Uncertainty Framework

The uncertainty framework is a pre-planning 
study for CLARREO.
Iterative one-year process involves

• Interviewing and collaborating with formulation 
manager, project scientist, mission scientist, IR 
instrument scientist, calibration manager, and 
research physical scientists.

• Reviewing mission related materials.
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CLARREO Uncertainty Framework
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MG-P2  Test and improve global climate model predictions.

CLARREO Uncertainty Framework

σtrend

Detect annual and decadal 
trends

Mission Goals

MG-P  Prove the ability to make global and zonal measurements 
with the accuracy, sampling and information content necessary to:

MG-P1 Detect  annual and decadal climate change trends and 

SO-P  Decadal climate change observations of feedbacks:
SO-P4 Cloud feedback, largest uncertainty
SO-P5 Water vapor and lapse rate feedback

Science Objectives

SO-P  Decadal climate change observations of  forcings: Total and 
Spectral Solar Irradiance. (NOAA: TSIS).

SO-P Decadal climate change observations of responses:
SO-P1 Temperature and humidity profiles.
SO-P2 Cloud properties.
SO-P3 Top of atmosphere shortwave and longwave radiative fluxes.

σaverage

Spatial / 
Temporal 
Average

σfingerprint

Benchmarking 
through 

Fingerprinting

σcalibration

Calibration 
algorithm

Raw instrument data
(L0 Data)

L3 Data

L1 Data

σGCM

Test and improve global 
climate model (GCM)

σintercalibration

Inter-
calibration

σprocessing

Processing 
Algorithm

σEPC

Excess Phase 
Computation 

(EPC)

Raw instrument data 
(L0 Data)

L1 Data

GNSS-ROInfrared 
(IR)

L4 Data

σaverage

Spatial/Temporal 
Average

σfingerprint

Benchmarking 
through 

Fingerprinting

σcalibration

Calibration 
algorithm

Raw instrument data
(L0 Data)

L3 Data

L1 Data

σintercalibration

Inter-
calibration

L4 Data

Reflected 
Solar (RS)

1

Forcings: Responses:
   - Surface Albedo RS    - Temperature profiles IR GNSS-RO
   - Greenhouse Gas IR    - Water Vapor profiles IR GNSS-RO
Feedbacks:    - Cloud response RS IR
   - Cloud RS IR    - Radiation response RS IR
   - Water Vapor IR GNSS-RO    - Snow/Ice Cover RS
   - Lapse Rate IR GNSS-RO
   - Snow/Ice Albedo RS

Time series of climate observations

σaverage

Spatial / 
Temporal 
Average

L2 Data

L3 Data

L2 Data

σcloud-masking

Cloud 
Masking



MG-P2  Test and improve global climate model predictions.

CLARREO Uncertainty Framework

σtrend

Detect annual and decadal 
trends

Mission Goals

MG-P  Prove the ability to make global and zonal measurements 
with the accuracy, sampling and information content necessary to:

MG-P1 Detect  annual and decadal climate change trends and 

σfingerprint

Benchmarking 
through 

Fingerprinting

σGCM

Test and improve global 
climate model (GCM)

GNSS-ROInfrared 
(IR)

L3Data

σfingerprint

Benchmarking 
through 

Fingerprinting

L3 Data

Reflected 
Solar (RS)

1

Forcings: Responses:
   - Surface Albedo RS    - Temperature profiles IR GNSS-RO
   - Greenhouse Gas IR    - Water Vapor profiles IR GNSS-RO
Feedbacks:    - Cloud response RS IR
   - Cloud RS IR    - Radiation response RS IR
   - Water Vapor IR GNSS-RO    - Snow/Ice Cover RS
   - Lapse Rate IR GNSS-RO
   - Snow/Ice Albedo RS

Time series of climate observations

L3 Data



σaverage

Spatial/Temporal 
Average
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through 
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(L0 Data)

L3 Data

L1 Data

σintercalibration

Inter-
calibration

L4 Data

L2 Data
σcloud-masking

Cloud 
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CLARREO Uncertainty Framework - RS
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σtrend

Detect annual and decadal 
trends

σGCM

Test and improve global 
climate model (GCM)

Time series of climate observations

σfingerprint

Benchmarking 
through 

Fingerprinting

L3 Data 4



Calibrated Measurement (L3 data)
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Signal Signatures – Spectral Correlation 6

∆y ∆X1 ∆X2 ∆X3 ∆X4

∆X5 ∆X6 ∆X7 ∆X8 ∆X9



Signal Signatures – Multi-Collinearity 7

∆X1 ∆X2 ∆X3 ∆X4

∆X5 ∆X6 ∆X7 ∆X8 ∆X9

Similarity of 
Signatures



Measurement Radiance Difference (∆y) – Spatial Variation

8



9

∆X2 – Spatial Variation
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∆X4 – Spatial Variation



Fingerprint Challenges

ε+∆++∆=∆ 9911 XaXay 

Multi-Collinearity

Spectral Correlation
Spatial Correlation

Spectral Correlation
Spatial Correlation

Spectral Correlation
Spatial Correlation

 

Figure 1  Time series samples obtained from fingerprinting analysis. 

a8 a7

a5 a4
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Conclusion
In developing a measurement system for Earth 

Observing Satellites to meet the accuracy level 
set by the mission to fulfill the goals, we need 
to
– Understand the end-to-end process from raw 

measurement to final science data.
– Evaluate the uncertainty budget for all steps of the 

end-to-end process.
– Determine the critical uncertainty driver(s) that 

could potentially affect the accuracy requirement.
– Allocate resources accordingly to these drivers.
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Design For Variation

NASA Statistical Engineering Symposium

Williamsburg, VA  5/5/2011

Grant Reinman, Fellow, Statistics

Pratt & Whitney, East Hartford, CT



© United Technologies Corporation (2011)Reinman, Rev Date 5/1/2011 Slide 2 of 22

Pratt & Whitney Engineering

A Passion for innovation 

PurePower® PW1000G Engine
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▲ To Reduce Escapes (Safety)
– Variation plays a significant role in field problems

– Cost of finding/correcting problems increases 

rapidly as product matures

A Strategic Initiative at Pratt & Whitney

▲ To Improve Producibility (Cost/Competitiveness)
– Find and focus on important features (few?)

– Relax requirements on unimportant features (many?)

– Use Robust Design to reduce sensitivity

▲ To Maximize Rotor Life  (Time on Wing)

– Rotor life depends on max distress / min life airfoil

– „Weakest link‟ structure pervasive in gas turbines

– Reducing variation increases rotor life 
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Design For Variation

Total Effect of Leading Edge Parameters on Oxidation Life
(Total effect is how much variation in life would be left if you knew precisely the values of all other 

parameters.)
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Design For Variation (DFV) Strategic Plan

▲ Strategy

☑ Identify Key Processes 

☑ Define elements of a DFV-enabled modeling process

☑ Provide Resources under Strategic Initiative

Fan & Compressor
HFB Producibility
Parametric Airfoil

Compressor Aero Design Structures
Probabilistic HCF

Parametric Geometry Simulation Model
Engine Dynamics and Loads

Combustor and Augmentor
Combustor pattern factor

Combustor Liner TMF
Augmentor Ignition Margin Audit

Mid Turbine Frame Robust Design

Mechanical Systems and Externals
Carbon Seal Performance

Ball & Roller Bearing Design
FDGS Durability

Externals: Forced Response Analysis

Turbine
Turbine Blade Durability

Turbine Vanes and BOAS Durability
Rotor Thermal Model 

Airfoil LCF Lifing

Air Systems
Thermal Management Model

Internal Air System Model
Engine Data Matching

Performance Analysis
Performance Monte Carlo Risk Assessment

Engine Test Confidence, Uncertainty
Uncertainty in Engine System Predictions

Production Test Data Trending and Analysis

Validation Testing
Engine Validation Planning

DFV Infrastructure 
(Statistics & Partners)

Sens / Uncert / Opt Software
High Perf Computing

Training
ESW

Communications
Input Data

Tech Support

Black: Legacy Task
Green: 2010 funded
Blue: 2011 funded (new)

Vehicle Systems
Probabilistic 

Ambient Temp 
Distribution

Vision:  All Key Modeling Processes will be DFV-enabled 
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Design For Variation

DEFINE Customer requirements (probabilistic)

ANALYZE Identify root causes of variation and uncertainty, 

develop variability/uncertainty model

SOLVE Identify „optimum‟ design that satisfies requirements

VERIFY/VALIDATE Variability/Uncertainty model

SUSTAIN Stable system of causes of performance variation

ANALYZE

SOLVE

VERIFY
VALIDATE

DEFINE

SUSTAIN

Five Components

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
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Develop Model 
Emulator, 

Sensitivity Analysis

Refine 
Distributions 
of Important 
Model Inputs

Run 
Real World 
Uncertainty 

Analysis

Perform 
Bayesian 

Model 
Calibration

Design Space Filling 
Experiment Over 

Model Input Space

ANALYZE Identify root causes of performance variation and uncertainty and their effects

Design For Variation
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▲ Performance characteristic y = f (x1, x2, …, xp) depends on p inputs

▲ The variance of y can be approximated by 
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1. Latin Hypercube Experimental Designs
3. Variance-Based Sensitivity Analysis

2. Gaussian Process Emulators 4. Kennedy and O’Hagan Bayesian Model Calibration

ANALYZE : Key Technologies

Kennedy and O’Hagan model/methods

• Calibrate engineering model
• Quantify model uncertainty 

 Parameter, bias, residual

Predictions Data
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X1

X2

2-level factorial designs assume 

linearity and focus on vertices of 

design space

2nd order response surface designs 

like the CCD tend toward corners 

and edges but improve on factorial 

designs

Latin Hypercube samples are 

space-filling and guarantee 

uniform distribution over margins 

(see X‟s in diagram) 

1. Latin Hypercube Experimental Designs

Design For Variation
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▲ Thousands of model runs typically required for 

uncertainty analysis

– Calibration

– Propagation of scenario uncertainty

– Sensitivity analysis 

▲ Not practical for computationally expensive codes

▲ Gaussian process models as „emulators‟

– Approximate model y=f(x)

– Provide probability distribution quantifying uncertainty at new 

design points

2. Gaussian Process Emulators

Design For Variation
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Simple function

f(x) = x + 3sin(x/2)
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Ref: O'Hagan, A. (2006). Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering and System Safety, 91, 1290-1300.

Observations
1. Zero uncertainty at training data
2. Uncertainty increases with 

distance from training data
3. Uncertainty decreases as training 

data are added 
4. Emulator shape changes as it 

“learns” from training data

These are desirable properties of any 
emulator

2. Gaussian Process Emulators

Design For Variation
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ANALYZE

3. Variance Based Sensitivity Analysis

Model Inputs

How much of the variance of model output is 

due to each input? 

1. Si = Var[E (Y | Xi )] /Var(Y ) 

– % Due to Main Effect of Xi

2. STi = E [Var (Y | X-i )] /Var(Y ) 

– % Due to Total Effect of Xi

– Main Effects + All Interaction Effects 

involving Xi , if Xi independent

Design For Variation

Si ,  STi
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▲ An uncertainty analysis augments a single point prediction with a probability distribution that 
accounts for

 Variability or uncertainty in model input

 Capability of model

▲ How variable or uncertain is your model input

 Uncertainty due to random variation in model inputs

▲ How capable is your model

 Uncertainty due to lack of agreement between model predictions and physical measurements (the 

real world response)

 Model validation

What is an Uncertainty Analysis?

4. Kennedy and O’Hagan Bayesian Model Calibration

Design For Variation
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▲ Some sources of uncertainty in the state of a physical system 

associated with a deterministic prediction

a. Scenario uncertainty - Uncertainty about some future measurable values 

of model inputs, e.g., what missions will be flown, what hole sizes will

result from the laser drilling process 

b. Parameter uncertainty - Uncertainty about best values of model 

parameters (e.g. heat transfer coefficients, Young‟s modulus, 

compressor efficiency) or uncertain inputs (e.g. boundary conditions)

c. Model structure uncertainty - Uncertainty about the difference between 

the mean of the real world process being modelled and the model

prediction using the best possible parameter values.  Sometimes referred 

to as model inadequacy, model discrepancy, or model bias.

d. Residual variation - Variation in real world outcomes at a given 

(known) scenario, due to variation in factors that are outside the model 

or measurement error

Uncertainty
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4. Kennedy and O’Hagan Bayesian Model Calibration
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w

y

F

Y

X

w

A statistical framework for combining experimental data with model predictions to provide best 

estimates and uncertainty for 

– Model calibration parameters

– Systematic discrepancies between model and data

– Standard deviation of random discrepancies between model and data

– Model predictions
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Nomenclature

Best value of model calibration inputs

True average system response given inputs x(x)

y(x) = (x,) + (x) + e(x)Combine to get best from both

(x) = (x,) + (x)Model smooth but biased

y(x) = (x) + e(x)Data few and noisy but unbiased

random observation error of the experimental datae(x)

discrepancy (bias) between (x) and (x,)(x)

Experimental observation for inputs xy(x)

Model prediction for inputs x and *(x,*)

Model calibration inputs*

Model variable (measurable) inputs (exper. conditions)x

Nomenclature

Best value of model calibration inputs

True average system response given inputs x(x)

y(x) = (x,) + (x) + e(x)Combine to get best from both

(x) = (x,) + (x)Model smooth but biased

y(x) = (x) + e(x)Data few and noisy but unbiased

random observation error of the experimental datae(x)

discrepancy (bias) between (x) and (x,)(x)

Experimental observation for inputs xy(x)

Model prediction for inputs x and *(x,*)

Model calibration inputs*

Model variable (measurable) inputs (exper. conditions)x

4. Kennedy and O’Hagan Bayesian Model Calibration
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Design For Variation

▲ Establish probabilistic design requirements

▲ Emulate, calibrate engineering models

▲ Solve for design that meets probabilistic requirements

– Look for opportunities for making design less sensitive to variation

▲ Validate and sustain model

▲ Write Engineering Standard Work, develop local training

Systematic Process for Designing for and Managing Uncertainty and Variability
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▲ Goal:  quantify, understand, and control the risk of not meeting design 
criteria or exceeding thresholds

▲ “The revolutionary idea that defines the boundary between modern times 
and the past is the mastery of risk: the notion that the future is more than a 
whim of the gods and that men and women are not passive before nature.”

– Peter Bernstein, “Against the Gods: The remarkable story of risk”

Model
Prediction

Design
Criteria

True Process Value 

Design For Variation
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▲ Establishment of „Gold Standard‟ numerical methods

▲ Commercial software availability

▲ Parametric geometry

▲ Optimal [model:experimental] DOE for model validation

▲ Computational issues (e.g. matrix inversion O(n3))

▲ Large transient models

▲ Calibration data outside operational range

▲ What if only sub-models can be calibrated?

▲ Discrepancy root cause investigation structure

– Original research assumed measurement process free of bias

– Sometimes instrumentation technology can rival model technology

▲ Best approach to confounding issues

▲ Lack of textbooks, engineering methods and applications papers

Challenges

Bayesian Model Calibration
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6. O’Hagan, A. (2004). Dicing with the unknown. Significance, Volume 1, Issue 3, pages 132–133

7. Bernardo, J. M. (2003). Bayesian Statistics. Encyclopedia of Life Support Systems (EOLSS). Probability and Statistics, (R. Viertl, ed). Oxford, UK: 
UNESCO (www.eolss.net) 
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Sample of Available Software  [Preliminary]

Kennedy and O’Hagan Bayesian Model Calibration

Note: GPMSA available through Brian Williams at LANL: brianw@lanl.gov

Software Data Analysis

Bayesian 
Data 

Analysis
Space-Filling 

DOE
Model 

Emulation*
Sensitivity 
Analysis

Calibration, 
single response

Calibration, 
multiple 

responses Optimization
Uncertainty 

Analysis
GEMSA X X X X
GEMCAL X  
GPMSA X X X X X
DAKOTA X X X   X X
Isight X X X
Matlab (Optimization Toolbox) X  
Matlab (Statistics Toolbox) X X  X
R (BACCO Package) X X X
R (Base Package) X X X
R (gptk Package) X
R (lhs, DiceDesign, DiceKriging Packages) X
R (mlegp Package) X X
R (tgp Package) X X
R (Sensitivity Package) X
R (LearnBayes package) X
WinBUGS X
JMP X X X X X
SAS X X X X
Minitab X
SimLab (Matlab/R) X X

MUCM Toolkit (algorithms): http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaHomePage.html

*Various Independent softwares exist for Model Emulation. See http://www.gaussianprocess.org/ for a listing
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Introduction – Related Material

• “A Criterion for Establishing Life Limits”, 1990, by Gill Skopp and Al 
Porter. 

• "A Statistical Approach for Risk Management of Space Shuttle 
Main Engine Components“, 1991 Probabilistic Safety Assessment 
and Management Conference, Beverly Hills, CA, by Fayssal M. 
Safie.

• “Lower Bound on Reliability for Weibull When Shape Parameter is 
not Estimated  Accurately”, 1991, by Zhoa Huang and Al Porter.

• “Weibull  Analysis Handbook”, 1983, by R.  Abernathy, C. Medlin, 
and G. Reinman.
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Introduction

• This work was done as part of the National Aeronautics 
and Space Administration (NASA) effort to introduce 
the use of Statistical/probabilistic models in managing 
the risk for critical Space Shuttle hardware.

• The result was a development of a statistically-based 
risk management tool to consistently and effectively 
extend the life limit of the Space Shuttle Main Engine 
(SSME) hardware based on the operational history 
combined with other engineering information.

• The purpose of the tool was to provide a standardized 
approach to disposition structural life limitations.

• The tool is called the Single Flight Reliability (SFR) 
criterion. 

3



The Need for The Tool 

4

The  SSME Standard Flight Deviation Approval Request (DAR) Criteria 



The Mathematical Basis
The Weibull Probability Density Function

5

β = The Weibull shape parameter

η = The  Weibull scale parameter



The Mathematical Basis
The Significance of  the Weibull Shape Parameter 

6



The Mathematical Bases – The Equations

7

90% Confidence

β = The Weibull shape parameter

η = The  Weibull scale parameter

t = The total time

m = the single mission time

(1-α)*100 = The confidence level

The Weibayes

The Weibull  probability density function:

The Weibull conditional probability function:

The Weibull reliability and failure functions:

(two parameters)



The Tool - Assumptions

• Infant mortality situations are excluded . 

• For a specific SSME component, all units have the same 
basic configuration and geometry, and all are tested in 
the same environment. 

• Only SSME components with extensive fleet hot fire 
experience with no failure history are considered.
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The Tool – The Process

• The SFR Criterion uses a statistical approach to derive a life 
limit for a given component subject to a specified reliability 
and confidence level requirement.

• The statistical approach developed is based on Weibull time-
to-failure distribution.

• Since the SFR Criterion applies only to components with no 
failures and the shape parameter of the Weibull distribution 
varies for different components, the Weibayes and a 
conditional Weibull reliability functions were used in 
combination with an optimization technique to derive a 
minimum life limit. 

9



The Tool  - The Process (continued)

Calculating The Minimum Life:
1) Assume a value of (β) of approximately one.
2) For the operational history of the item under consideration, estimate 

(η) at the 90% confidence level using:

3) Use the β and η in steps 1 and 2, and the specified single flight 
reliability (i.e., 0.995) to determine the value of t using:

4 ) Starting from the second iteration, check if the value of t obtained in 
step 3 is higher than the value of t obtained from the previous 
iteration. If so, go to step 6 .

5) Increment the value of β and go to step 2.
6) The value of t is the minimum.
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The Mathematical Bases – The Minimum Life
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The Tool  - The Process (Continued)

• The minimum life limit derived is then checked to make 
sure that it does not exceed 50% of the operating time of 
the fleet leading unit, or the minimum operating time of 
the six leading units.

• If the life limit derived is less than 25% of the fleet leading 
unit, the life limit is increased to 25%. 

• The life limit derived has a lower bound of 25% of the fleet 
leading unit and an upper bound defined by the lesser of 
50% of the fleet leading unit or the lowest of the six 
leading units.

12



The Application - The SSME Fuel Bleed Duct

• Data on 42 SME fuel bleed duct units with zero failures are used 
here to illustrate the application of the SFR tool. 

• Using this data, for a 0.995 single flight reliability and 90% 
confidence level requirement, the minimum total time, t, derived 
is 11,478 seconds. 

• This value of t represents approximately 34% of the operational 
experience of the fleet leading unit of 33,744 seconds. 

• The 34% is higher than the lower bound of 25% (8,437 seconds) 
and lower than the upper bound of 50% (16,87 2 seconds) and the 
minimum of the six leading units (62% of the fleet leader) .

• Therefore, the life limit is 11,478 seconds.

13



The Application - The SSME Fuel Bleed Duct
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The SSME Fuel Bleed Duct



Concluding Remarks

• The statistical tool presented was implemented as 
part of the Space Shuttle Program requirement.

• The tool has been effectively used by the Shuttle 
Program since the early 1990’s.

• This is a good example of how Statistical 
Engineering has helped the SSME program to 
reduce cost, increase availability, and maintain 
high level of reliability of critical hardware.
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Mission Success Starts With Safety

The Basic Problem Addressed

• A new system such as a new spacecraft is to be 
evaluated for its reliability* 

• Part of the evaluation involves determining the number 
of tests to perform before acceptance

• The evaluation also involves dynamically tracking the 
reliability evolution of the system with test and operation

• To optimize resources, the evaluations need to utilize all 
available information

• Uncertainties also need to be treated and be quantified

5/2011 (2)

*Safety is treated as part of reliability here 



Mission Success Starts With Safety

Basic Concepts: Design Reliability and 
Demonstration Tests

• Design reliability is the probability that a new 
system has no inherent failure-causing faults

• Demonstration tests are conducted to detect any 
such inherent failure-causing faults

• Demonstration tests can be partial tests or can be 
test flights

• A major issue: How tests are needed to 
demonstrate a given reliability to a given certainty?

5/2011 (3)
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Factors Determining Number of Tests to Conduct

• From reliability growth principles the required number 
of tests depends on three major factors:

– Initial Assurance Level 

– Fault-Detection Effectiveness

– Corrective Action Effectiveness

• Objective: Develop an approach that incorporates 
these factors and quantifies the reliability after a 
given number of tests 

5/2011 (4)
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Framework of the Bayesian Approach

• The reliability estimate is described by a probability 
distribution to account for uncertainties

• The distribution gives the mean, median, and 
uncertainty bounds

• An initial distribution (prior distribution) is 
constructed to account for initial knowledge

• The distribution is updated from the results of a test 
using Bayes theorem  

• This updating is continued to determine the number 
of required tests or to track performance 
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Advantages of the Bayesian Approach 

• The Bayesian approach can utilize both quantitative 
and qualitative information

• Uncertainties are comprehensively quantified 
• Assessments are dynamically updated as 

information is gained from the tests
• The Bayesian approach is standardly used in NASA 

risk and reliability assessments
• Software exists that can carry out the evaluations in 

an efficient manner

5/2011 (6)
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Inputs to the Bayesian Approach

• The Prior System Reliability Estimate is determined 
from the bases for the Initial Assurance Level:
– Hazard analyses and FMEAs
– Reliability and Risk analyses
– Oversights and Reviews

• The Fault Detection Probability and the Fault Correction 

Probability Estimates are determined using test and 
repair information:
– System specific data
– Shuttle analyses and data
– Constellation analyses

5/2011 (7)
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Applications to Determine the Number of 
Required Failure-Free Tests

• The next slide gives the number of required failure-free tests 
as a function of the initial assurance level

• The second slide overlays the curve for the binomial estimate 
which inaccurately treats the tests as throw-away tests

• The third slide quantifies the uncertainty and shows how it 
decreases with tests even if the initial information is uncertain

• These slides show the decision-making information provided 
using the Bayesian approach

• These results can be extended to cover the cases where 
failures or faults occur during the testing 

5/2011 (8)
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Failure Probability Estimates Versus Number of Failure Free 
Tests and Initial Failure Probability Estimate
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Failure Probability Estimates Compared to the Binomial Sampling Estimate 
Which Models the System Tests as Throw-Away Sample Tests
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Application to Track Reliability Growth

• The next slide shows the application to track the reliability 
growth of the Space Shuttle

• The application updates the estimate for each next flight 
based on flight history information

• A Kalman filter is basically used on a transformed scale 
with Bayesian updating

• Both forward estimates and back estimates can be made 
• Fault occurrences as well as failure occurrences are 

handled
• Software is developed to allow efficient application

5/2011 (12)
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Summary

• Key problems for a new system are the number of tests 
to conduct and the tracking of reliability

• The analysis needs to incorporate engineering 
information, reviews and oversights, and statistical data

• Bayesian analysis has these capabilities for dynamically 
updating estimates and quantifying uncertainties

• The application to number of tests needed shows the 
importance of incorporating the initial assurance level

• The application in tracking Shuttle shows the importance 
of dynamically tracking actual reliability growth 
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• Entry, descent, and landing (EDL) is the phase of flight defined from atmospheric interface to touchdown on 
a planetary surface

• Future planetary missions strive to deliver larger payloads at higher altitudes with increased landing 
accuracy; currently driven by available EDL technologies 

– Nearing the limit with current technologies for Mars Science Laboratory (MSL); currently scheduled to 
launch Fall 2011

– Stringent requirement for any manned missions; for Mars: two order of magnitude increase in landed 
payload mass, four order of magnitude increase in landing accuracy

• Current EDL systems are based on Viking-era technologies (1970’s NASA Mars program) with minor 

modifications

– Aeroshell geometry, thermal protection system (TPS) material, parachute design

• Development of newer, more robust EDL technologies rely on improving Earth-based modeling capabilities

– Large uncertainties in computational simulations

– Inadequate ground-based testing facilities 

– Sparse amount of flight data available 



MEDLI Overview
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• MEDLI High-Level Objectives:

– Provide more than an order of magnitude more data than all previous Mars entry missions combined

– Answer fundamental questions relating to leeside turbulent heating levels, forebody flow transition, and 
TPS material response in a carbon dioxide atmosphere

– Permit a more accurate post-flight trajectory reconstruction

– Allow separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic flow 
regimes.

• The MSL Entry, Descent, and Landing 
Instrumentation (MEDLI) is a suite of sensors 
installed on the forebody heatshield of the MSL 
entry vehicle

– Sensor locations determined by science team

– Some similar components to previous entry 
instrumentation packages

• MEDLI operational from ten minutes prior to 
atmospheric interface to heatshield separation

• MEDLI proposed to address some of the 
challenges associated with development of newer, 
more robust EDL technologies



MEDLI Subsystems
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• MEDLI Integrated Sensor Plugs (MISP)

– A plug consists of a 1.4” diameter heatshield 

TPS core with embedded thermocouples and 
recession sensors

– Each plug consists of one (1) recession sensor 
and four (4) thermocouple sensors

– Supports aerothermodynamic and TPS science 
objectives

• Mars Entry Atmospheric Data System (MEADS)

– Series of through-holes, or ports, in the TPS 
that connect via tubing to pressure transducers

– Based on Shuttle Entry Air Data System 
(SEADS)

– Supports aerodynamic and atmospheric 
science objectives

• Sensor Support Electronics (SSE)

– Electronics box that conditions sensor signals 
and provides power to MISP and MEADS

MISP MEADS Pressure 
Transducer

SSE



Pressure Measurement System
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• Components of the pressure measurement 
system: seven (7) MEADS pressure 
transducers, SSE

• Pressure Measurement System Science 
Objectives:

– Estimate flight parameters from measured 
pressures

– Improve atmospheric models (density) for 
Earth-based computational simulations

• Defendable uncertainty in estimated flight 
parameters rely on adequate measurement 
system characterization over extreme 
environmental conditions

• Pressure Measurement System Characterization Challenges:

– Pressure varies across port locations on the heatshield; temperatures vary between the SSE and 
pressure transducer locations; pressure and temperature vary with time during reentry

– Possible Operational Ranges: 0.00 to 5.00 psia (Pressure), -120 to -60 deg. C (Transducer 
Temperature), -20 to 55 deg. C (SSE Temperature)

– Large temperature ranges represent the uncertainty in the start temperatures (i.e. transducer 
temperature can start anywhere in the range of -120 to -60 deg. C with an expected change of 10 deg. 
C over the entry)   



Pressure Measurement System 
Characterization - I
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• Objective: Adequate measurement system characterization (calibration) over extreme environments; 
deliverables include

– Mathematical model to estimate flight pressures

– Uncertainty estimates throughout the flight trajectory
• Total measurement uncertainty goal of 1 percent of reading through the range of 0.12 to 5.00 psia

• Utilized response surface techniques to provide a robust, defendable system characterization

– RSM-based calibrations have been performed at NASA LaRC since 1999 (force balance applications)

– Nontraditional use of RSM: not interested in system optimization; deliverables are measurement system 
knowledge (mathematical model and uncertainties)

– Certain experimental design properties are important to providing a robust mathematical model that can 
be applied confidently to flight data

• Experimental Design Development

– Mathematical model based on second-order Taylor series expansion of three factors

– Replication included to estimate the pure experimental error in the measurement system (one metric for 
comparison of transducers)

– Prediction variance properties of the design translate to total measurement uncertainty of the system



Pressure Measurement System 
Characterization - II
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• Impact of Restricted Randomization

– Since temperature is held constant while a pressure sequence is executed, there is a degree of 
correlation among the points; however different temperature combinations are independent

– Require some advanced technique to perform the analysis which accounts for the restricted 
randomization

• Restricted maximum likelihood (REML)

• Statistical calibration problem: develop forward regression model and invert to solve for estimated 
parameter

• NASA LaRC 6’ x 6’ Thermal Vacuum Facility

– Provides the necessary testing conditions to 
characterize the pressure measurement system 
based on possible environmental conditions

– Limitations of the Facility
• The pressure measure system can stabilize 

with temperature within 2 hours and with 
pressure within 1 minute

• Restrict the randomization of temperature to 
improve the experimental efficiency (split-plot)

- Temperature combination is set and held 
constant while the pressure levels are 
varied



Pressure Measurement System 
Characterization Summary
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Methodology and Tools Overview:

1. DOE/RSM:

– Development of the experimental design to support objectives

– Accommodate practical restrictions (restricted randomization)

– Simulated entry trajectories: best attempt to simulate expected flight conditions on the ground

2. Transducer Repeatability:

– Pure error estimation

3. Forward Regression Modeling:

– REML: variance component estimation and model reduction

4. Model Inversion for Flight Data Reduction:

– Estimate pressure from signal response and temperatures

– Two (2) methods available: direct or iterative

5. Inverse Prediction Uncertainty:

– Delta method used to calculate the variance in the estimated pressure

6. In-flight Zero Algorithm:

– Exploit known, physical information prior to entry (hard vacuum in space)



Post-Flight Trajectory Reconstruction
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• Three (3) quasi-independent methods to reconstruct the entry trajectory

– Ideally all the reconstructed trajectories match

– Historically discrepancies have existed in the reconstructed trajectories which have not been systematically 
resolved 

• System-level approach to quantifying uncertainties has not been emphasized for previous reconstruction efforts

• Emphasize more strategic approach to help meet objectives: Monte Carlo vs. Designed Experiment

Pressures Rates

Pressure-based 
Reconstruction

Aerodynamic-based
Reconstruction

Accelerations Quaternion

Simulation-based
Reconstruction

Measured Flight Data

Pressures Aerodynamics

Preflight Simulation

Coordinate Transformations



Reconstruction Reconciliation
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• Research effort with Georgia Tech (Jason Corman and Brian German) under the funding auspices of the 
NASA Graduate Student Research Program (GSRP)

• Focused on the development of a general approach to determine the causes in differences between various 
trajectory reconstruction methods

– Reconstructed trajectories do not need to match exactly

– Uncertainty intervals of the trajectories to overlap

• Developed a simplified, 2 degree-of-freedom (DOF) simulation tool to study trends and sensitivities

– Identified and tested techniques to help mitigate discrepancies in basic reconstruction methods 

– Apply the approach to the actual 6 DOF simulation tool used during reconstruction



Pressure-based Trajectory Reconstruction
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• Combines actual flight pressure data and preflight simulation data to estimate vehicle orientation, 
freestream dynamic pressure, and Mach number 

• Preflight simulation data based on computational fluid dynamics (CFD) with limited anchoring to 
experimental data

– Experimental facilities available are not relevant to expected flight environment

– Higher confidence in computational results in certain regions of the trajectory

• Uncertainty requirements for estimated flight parameters (angle of attack, angle of sideslip, Mach number, 
dynamic pressure) specified at project’s inception 

• Uncertainty requirements were determined assuming perfect (no uncertainty) preflight simulation data

– Investment of resources focused on minimizing the uncertainty in the pressure measurement 
uncertainty

• Total uncertainty is the root sum squared (RSS) of the pressure measurement system uncertainty and the 
preflight simulation uncertainty

– Pressure Measurement System Uncertainty ~ ± 0.25 percent (actual)

– Preflight Simulation Uncertainty ~ ± 5 percent



Summary
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• Development of more robust EDL technologies rely on capabilities of Earth-based modeling capabilities

• Contributions to MEDLI:

– Pressure Measurement System Characterization
• Mathematical modeling of the pressure measurement system
• Defendable uncertainty quantification of the system

– System-level Approach to Preflight Trajectory Reconstruction
• Subsystem uncertainty quantification
• General approach to reconstruction reconciliation 

• Lessons Learned from MEDLI:

– Traceable objectives to support future missions
• Development of technologies
• Decision-making process

– Investment of resources to support objectives
• Division between computational and physical experiments

– Focus on knowledge and learning rather than what needs to be done or built
• De-emphasizes data quantity
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Overview 

  Introduction 
  Motivation – MSL Test Objectives 
  Calibration Techniques 
  SS-12 Force Balance Design 
  Experimental Design 

–  Pre-Planning 
–  Experimental Design (Load Schedule) Development 

•  Crossed Design  
•  IV Optimal Design 

–  Execution Strategy and Implications 
–  Experimental Design Properties 

  Calibration Setup & Execution  
  Data/Error Analysis & Model Comparison 
  Conclusions 
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Motivation 
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  Previous testing at the NASA LaRC 31-Inch Mach 10 facility with the Mars Science 
Laboratory (MSL) aeroshell revealed several thermal related issues during tests. 

  Primary issue involved temperature drift of the force balance over the duration of each blow-
down run. 

  Worst-case temperature drift observed during RCS pressure cycle runs (cycling reaction 
control jets on-off ) was ~ 40°F over 120 second run time.  

  MSL research team proposed the following problem statement: 
–  Pursue having balance team at NASA LaRC design method for characterizing the outputs of the 

strain-gages subject to various forces, moments, pressures, and temperatures  



What is a Force Balance? 

  Force Balances are transducers used to measure the 6DOF aerodynamic loads encountered by 
a wind tunnel model during a wind tunnel test 

  Balances are complex structural spring elements composed of flexural elements – only 
structural component between model (metric end) and sting (non-metric end) 

  Flexures are instrumented with foil resistive strain gages that output an electrical signal which 
is proportional to the strain level induced onto the flexural elements 

  Balance structure and instrumentation designed to be sensitive to only single component 
applied loads/moments, but imperfections (in machining/instrumentation) require us to 
characterize interactions 
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SS-12 Force Balance 

Component Design Load 
NF 100 lbs 
AF n/a 
PM 150 in-lbs 
RM 32 in-lbs 
YM 40 in-lbs 
SF 30 lbs 
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  SS-12 is a single-piece, 5-component, water-cooled, flow-thru force balance (no Axial Force) 
  Balance has a concentric hole down its center, allowing flow of gas thru balance and out to 

attached model on metric end 
  Normal force and side force components re-gauged from direct read to a force type balance 

configuration (N1, N2, S1, S2, RM) 
–  N1/N2, S1/S2 bridges at a single axial station along balance 
–  Single station bridging of strain gages aids in reducing sensitivity of measurement bridges to thermal effects 

  Balance design features an active cooling shield that covers balance during use, and actively 
cycles water around balance (typical for balances used in supersonic/hypersonic testing 
regimes) 

Non-Metric End 
(grounded) 

Metric End 
(attached to model) 

Heat Air from Sting Cooling from 
Cooling Shield 
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  A clear statement of the goals/objectives of an experiment is critical (Answer the right 
question(s).) 

–  Objective:  
1.  Characterize the outputs of the strain-gages subject to various forces, moments, pressures, and 

temperatures (develop continuous functions for each measurement component) 
  Selection of the factors and measured responses 

–  Aerodynamicists, Force Measurement Engineers and Statistical design experts 
collaborated to determine optimal solution to meet objectives 

–  Design, Held-Constant, Uncontrolled Factors 
–  Design Factor ranges: 

•  Forces and Moments  →  full-scale range balance design loads (which match the expected test 
loads) 

•  Pressure and Temperature  →  range over expected operating conditions during wind-tunnel test 

–  Design Factor Levels: support experimental objectives 

Factor Label Design Factor (units) Range 
A Normal Force (lbs) -100 to +100 
B Pitching Moment (in-lbs) -150 to +150 
C Rolling Moment (in-lbs) -32 to +32 
D Yawing Moment (in-lbs) -40 to +40 
E Side Force (lbs) -30 to +30 
F Average Balance Temperature(°F) 70 to 120 
G Balance Cavity Pressure (psia) 14.7 to 400 

Response Response Type (units) 
1 Normal Force Bridge Output (µV/V) 
2 Pitching Moment Bridge Output (µV/V) 
3 Rolling Moment Bridge Output  (µV/V) 
4 Yawing Moment Bridge Output (µV/V) 
5 Side Force Bridge Output (µV/V) 

Design Factors: 
Measured Responses: 
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Experimental Design 
•  Fundamentals of Statistical Design of Experiments 

–  Randomization: defends against systematic errors (i.e. hysteresis) in an experiment.   
–  Replication: provides information on the pure experimental error in the response, which 

sets the lower bound for uncertainty. 
–  Blocking: limits the effects of any nuisance (controlled or uncontrolled) factors in an 

experiment. 
•  Postulated Mathematical Model: based on Taylor series expansion 
•  Balances are highly dimensional instruments, requiring response surface methods to 

properly characterize performance over design-space 
•  Two Experimental Designs Generated & Executed 

–  Crossed  Design & IV Optimal Design (both designs are Split-Plot (SP) designs) 
–  Forces/Moment load schedules based off Central Composite Design (CCD) 
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Calibration Execution (Crossed  Design) 

  Presence of hard-to-change factors in an experiment can make a completely 
randomized experimental design impractical to implement. 

–  Temperature is often an expensive/time-consuming factor to change 
  Split-Plot designs are a technique to deal with experiments with hard-to-change 

factors 
–  Restrict randomization for hard-to-change factors 
–  Concept developed from agricultural experiments 

  Temperature is set and held constant while pressure, forces, and moments 
combinations are varied randomly for each point within each whole plot 
  Because of time required to complete, design is blocked by day.  Once temperature is set, it does not 

change for the rest of that day. 

  Calibration occurred over the course of 8 days 
–  2 days for standard calibration 
–  6 days for pressure/temperature calibration 
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Whole Plot #1 (Temperature #1) Whole Plot #2 (Temperature #2) 
P/F/M 

#1 … P/F/M 
#N 

P/F/M 
#1 … P/F/M 

#N 
Tare sequence beginning/end of each day Tare sequence beginning/end of each day 



Development of the Experimental Design 1 
 (Crossed  Design) 
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5-Component SVS Design: 

Factorial Design Points Axial Design Points 

Factorial Points:  16 
Axial Points:  20 
Center Points:    6 
Total:   42 



Development of the Experimental Design I  
(Crossed  Design) 

Mathematical Model Assumptions: 
  First-order effect of temperature on responses (req. 2 unique levels) 

–  Assumption based on experience, historical data 
  Second-order effect of pressure, forces, and moments on responses (req. 3 

unique levels) 
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70 deg. F 

120 deg. F 

14.7 psia 

120 psia 

200 psia 

400 psia 

5-component 
SVS Design 

Temperature Pressure Forces/Moments 

Experimental Design Development: 

Completely Crossed (Equivalent/
Balanced Design) 

305 total 
points to build 

model + 87 
confirmation 

points 

Total # of Runs 



Development of the Experimental Design II & 
Execution  (Optimal Design) 

Mathematical Model Assumptions: 
  Same as Crossed Design 

  Crossed experimental design points used as a candidate list within DE to 
generate an optimal design 

–  Completely Crossed  design contained all possible combinations possible using SVS, 
based on common CCD design 

–  IV Optimal Design used as it provides a lower prediction variance across the design 
space (desirable for instances when prediction capability is critical) 

–  44 point design generated & executed (plus 42 point room temp design – needed to 
provide sufficient DOF in order to compute T main effect term) 

  Design properties (leverage, VIF’s, SE) inspected to ensure good selection 
of design points 

5/10/11	
  

Whole Plot #1 (Temperature #1) Whole Plot #2 (Temperature #2) 

P/F/M 
#1 … P/F/M 

#N 
P/F/M 

#1 … P/F/M 
#N 
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Tare sequence beginning/end of each day Tare sequence beginning/end of each day 



Calibration Setup 

  Single Vector System (SVS) 
used during calibration to orient 
balance 

  Heater system configured with 
foil heaters on balance 
calibration block and SVS back-
stop to elevate steady balance 
temperature to desired settings.   

–  Temperatures actively 
controlled to within 1-2 °F of 
desired set point 

  Static pressure applied to 
internal balance cavity via 
pressure fitting in rear of stump 
adapter. 

–  Cap plate on forward most end 
of balance  calibration block 
sealed off system, allowing 
application of static pressure to 
balance 

–  Nitrogen k-bottle used for air 
source 
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Results: Model Comparison 
(RM Response) 
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Results: Model Comparison 
(SF Response) 
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Results: Model Summary 
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•  No model reduction employed 
•  Tare data collected during calibration used to reduce data, in order to get total applied loads 
•  Data from both Completely Crossed  & Optimal designs analyzed using REML in JMP 
•  Each design clearly shows improved prediction accuracy when Pressure/Temperature model 

coefficients included 
•  Small differences in prediction accuracy estimates exist between crossed and optimal designs 

2sigma (%FSE) 

NF PM RM YM SF 

crossed design, w/ P and T terms 0.0849 0.0699 0.4637 0.1185 0.1628 

crossed design, w/o P and T terms 0.1218 0.1077 0.4776 0.1645 0.2095 

2sigma (%FSE) 

NF PM RM YM SF 

optimal + room temp data, w/ P and T 0.1104 0.0918 0.5715 0.1579 0.2054 

optimal + room temp data, w/o P and T 0.1497 0.1186 0.5404 0.1857 0.2503 



Conclusions 

  An engineering problem was presented to the team. A methodical approach was developed to 
solve this problem, which combined efforts from both engineering and statistical fields of 
expertise. 

  Demonstrated a method to characterize the force balance in the wind tunnel environment, 
including temperature and pressure, thereby improving aerodynamic research data quality 
-  Data from calibration and MSL test data reveals significant improvement (multiple sources contribute 

to increased data improvement) 
  Calibration data reveals both designs result in very similar mathematical models, with very 

similar residual/accuracy estimates 
  Appropriate metrics were determined to evaluate the robustness of the experimental design, 

developed for this specific calibration. 
  With appropriate planning and coordination, the methods described from this investigation can 

be applied to any calibration to yield a powerful mathematical model that characterizes the 
performance of the system under consideration. 

  Resulting mathematical models (algorithms) generated were transferred to the wind-tunnel test 
team, and the on-board compensation techniques were applied real time during the test. 
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Contacts and References 

•  Contacts for more information: 
 Keith (Chris) Lynn (keith.c.lynn@nasa.gov) 
 Sean Commo (sean.a.commo@nasa.gov) 
 Thomas Johnson (thomas.h.johnson@nasa.gov) 
 Peter Parker (peter.a.parker@nasa.gov) 

•  Some Textbooks: 
•  Montgomery, D.C., Design and Analysis of Experiments, 7th Edition, 2009, John Wiley & Sons, Inc., 

New York. 
•  Myers, R.H. et. al., Response Surface Methodology, 3rd Edition, 2009, John Wiley & Sons, Inc., New 

York. 
•  Montgomery, D.C. et. al., Introduction to Linear Regression Analysis, 4th Edition, John Wiley & Sons, 

Inc., New York. 
•  Some Articles, Annotated: 

•  Schoenenberger, M. et. al., “Aerodynamic Challenges for the Mars Science Laboratory Entry, 
Descent, and Landing”, AIAA 2009-3914, June 2009. 

•  AIAA, “Recommended Practice: Calibration and Use of Internal Strain-Gage Balances with 
Applications to Wind Tunnel Testing”, AIAA R-091-2003. 

•  Parker, P.A., “A Single-Vector Force Calibration Method Featuring the Modern Design of 
Experiments”, AIAA 2001-0170, January 2001. 
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Advancements in Aeronautics Measurement 
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2 

The goals of the ATP include: 

•  increasing the probability of 
having the right capabilities in 
place at the right time 

•  operating facilities in the most 
effective and efficient manner 
possible 

•  to foster those capabilities 
through a corporate 
management philosophy 

•  ensuring intelligent investment 
and divestment while sustaining 
core capabilities 

•  Providing quality data 
(information) to answer key 
technical research and 
development questions  
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Test Technology – Instrumentation 
Critical Element of Data Quality 

 Force and angle-of-attack measurement 
technology are key aeronautical capabilities 
addressed by the National Aeronautics R&D Policy 

•  “We will dedicate ourselves to the mastery and 
intellectual stewardship of the core competencies of 
Aeronautics”, and “key aeronautical capabilities”  

•  Capability in these technologies are not ones that NASA 
can readily purchase - the instruments are complex and 
require an experience based competency 
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•  Establish a national test technology capability to 
support aeronautics test requirements for NASA, 
AEDC, and the nation  

•  Dedicate a few NASA engineers and technicians 
–  Develop subject matter experts (SMEs) through 

“hands-on” experience 
•  Centers/Programs cooperate to provide & fund FTE  
•  ATP/SCAP invest in maintenance and 

recapitalization projects 

ATP Established Test Technology 
Capability Projects 



Infusing Statistical Thinking 

•  Developed strategic technical goals – One goal is to: 

•  Improve calibration/characterization and develop recommended 
practices – multi-component force and angle measurement systems 
lack traceable calibration system standards 

–  Train SMEs on methodologies, tools and techniques 
–  Bring statistical engineers into work hands-on projects to facilitate 

the training and improve knowledge transfer 

–  Key: Continue questioning “WHY” – from the calibration systems 
to the experimental calibration designs to the calibration data 
analysis and model building 

Calibration Goal: Produce an accurate mathematical model 
(matrix) to estimate the aerodynamic parameters from measured 
responses. 
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Force Measurement 
Wind Tunnel Force Balances 

•  Specialized force 
measurement 
instruments 
utilized in >90% 
of wind tunnel 
experiments 

•  Measure six 
components of 
load 

•  Highly stressed 
•  Failure is 

potentially 
catastrophic 



Wind Tunnel Force Balances 

•  Calibration/Characterization 
Improvements 
–  Implementation of statistical 

analysis techniques tailored 
for balances 

–  Model building based on: 
•  Statistical significance 
•  Variance inflation 

–  Results: 
•  Improved models (more 

robust) 
•  New information on 

uncertainty intervals 
•  Insight into instrument 

behavior and calibration 
experiments 

BalFit Software Tool 



Wind Tunnel Force Balances 
•  Calibration/Characterization Improvements 

–  Implementation of the Single Vector System (SVS) as a standard technique 
•  Integrates a Unique Force Application with DOE – Advantage of SME 

and Statistical Engineering collaboration (coupled experiment design 
and analysis into the calibration system development) 

•  Randomization: to defend against systematic errors due to time, 
temperature or order of loading; Blocking: to prevent variation between 
blocks by breaking the experiment into manageable pieces; Replication: 
to cancel out random error and estimate pure error 

–  Results: 
•  Increased Accuracy, and 10x Reduction in Time and Cost 
•  Fewer sources of systematic error 
•  Insight into instrument behavior and calibration experiments 



OFAT design DOE design 

Wind Tunnel Force Balances 

•  Calibration/Characterization 
Improvements 
–  Implementation of design of 

experiments (DOE) 
techniques to more and 
complex calibrations 

–  Adding additional factors 
such as temperature and 
pressure 

–  Results: 
•  Improved models (more 

robust) 
•  More efficient 

experimental plans 
(number of runs) 

•  Simpler implementation 
(more reasonable) 



Angle Measurement Systems 

•  Angle Measurement System (AMS) 
–  Utilized to determine the model 

orientation (Pitch and Roll) 
–  Three single-axis servo 

accelerometers (quartz flexures, 
Q-flex) mounted in a (near) 
orthogonal frame 

–  Signal is proportional in 
magnitude and direction relative 
to earth's gravity vector 

•  linearly proportional to the 
gravitational components 

•  angle is proportional to the 
sine of the gravitational 
component 

Tri-axial accelerometer (AMS) 



Angle Measurement Systems 

•  Calibration/Characterization 
Improvements 
–  Implementation of statistical 

design and analysis 
techniques for baseline 
calibration 

–  Model building based on: 
•  Statistical significance 
•  Variance inflation 

–  Results: 
•  Improved models (more 

robust) 
•  New information on 

uncertainty intervals 
•  Insight into instrument 

behavior and calibration 
experiments 

Baseline Calibration System 



Angle Measurement Systems 

•  Calibration/Characterization 
Improvements 
–  Developed new calibration 

verification system – “Cube” 
•  Adds statistical quality 

control 

–  Results: 
•  On-site, pre-test system 

performance verification 
•  New information on 

uncertainty intervals 
•  Insight into instrument 

behavior and calibration 
intervals 



Summary - Infusing Statistical Thinking 

•  Developed strategic technical goals – One goal is to: 

•  Improve calibration/characterization and develop recommended 
practices – multi-component force and angle measurement systems 
lack traceable calibration system standards 

–  Train SMEs on methodologies, tools and techniques 
–  Bring statistical engineers into work hands-on projects to facilitate 

the training and improve knowledge transfer 

–  Key: Continue questioning “WHY” – from the calibration systems 
to the experimental calibration designs to the calibration data 
analysis and model building 

Calibration Goal: Produce an accurate mathematical model 
(matrix) to estimate the aerodynamic parameters from measured 
responses. 
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